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a b s t r a c t

Wepropose the generalized profilingmethod to estimate themultiple regression functions
in the framework of penalized spline smoothing, where the regression functions and
the smoothing parameter are estimated in two nested levels of optimization. The
corresponding gradients and Hessian matrices are worked out analytically, using the
Implicit Function Theorem if necessary, which leads to fast and stable computation. Our
main contribution is developing the modified delta method to estimate the variances
of the regression functions, which include the uncertainty of the smoothing parameter
estimates. We further develop adaptive penalized spline smoothing to estimate spatially
heterogeneous regression functions, where the smoothing parameter is a function that
changes along with the curvature of regression functions. The simulations and application
show that the generalized profiling method leads to good estimates for the regression
functions and their variances.

Crown Copyright© 2008 Published by Elsevier B.V. All rights reserved.

1. Introduction

Nonparametric regression, or smoothing, describes the flexible association between covariates and responses, and
many competing methods have been proposed, including kernel-based methods and spline smoothing. We consider the
representation of a sample of N functional observations by a set of smooth curves. Let tij, i = 1, . . . , nj; j = 1, . . . ,N be
a point at which the jth process is observed, and let yij be the observed value. No restrictions on the tij’s, such as equal
spacing or the same values for all observations, are required, although we do assume that the observations are defined over
a common domain t ∈ Ω . For simplicity, we adopt the additive Gaussian error model

yij = µj(tij|β)+ εij,

where εj is an nj-vector containing themeasurement errors for observation j and is assumed in the distribution ofMN(0,Σj),
where Σj is the corresponding variance–covariance matrix. The functional parameters µj(t|β) may depend on a finite
dimensional vector β of fixed effect parameters that do not vary with j, as well as on further functional parameters through
models such as the semiparametric regressionmodelµj[β′zj+ηj(t)], where zj is a vector of known covariates. If there is not
such a dependency, we shall use the notation µj(t). The estimator xj(t) of µj(t) will be estimated with the spline method
(Wahba, 1983, 1990; Friedman, 1991; Wand, 2000; de Boor, 2001). In other words, xj(t) is expressed in terms of the basis
function expansion

xj(t) = c′jφ(t)
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Fig. 1. One set of simulated data (dots) generated by adding Gaussian noise (STD = 0.5) to 300 equally spaced points. The solid lines are the true
curve µi = a1i exp(−400(x − 0.6)2) + a2i exp(−500(x − 0.75)2) + a3i exp(−500(x − 0.9)2), a1i ∼ Normal(1, 0.12), a2i ∼ Normal(5/3, 0.12),
a3i ∼ Normal(2, 0.12), i = 1, . . . , 4.

where φ is a vector of length Kµ of known basis functions. There are many good basis systems, such as Fourier basis and
wavelets. In particular, it has been proven that any piecewise smooth function can bewell approximated by the spline basis,
which is defined by a sequence of knots. de Boor (2001) showed how to improve the spline approximation accuracy and
efficiency by the knot selection. However, there are few methods that can select the optimal knot sequence for arbitrary
problems.
Instead, we prefer to put at least one knot on each point having an observation, so that the basis function expansion is

powerful enough to capture any amount of variation in the observed data. To prevent the estimated function fromoverfitting
the data, we require a roughness penalty in our optimization criterion, which is called penalized smoothing. The roughness
penalty is defined as

PEN(xj) = λ
∫
Ω

‖Lγxj(t)‖2dt.

This functional is defined by a possibly nonlinear differential operator Lγ that may in turn depend on a parameter vector γ
whose value has to be estimated. Norms other than that ofL2 may be used depending on the situation.
All simulations and applications in this article use the second derivative to define the roughness penalty term. Although

the paper is developedwithin the framework of generalized least squares estimation, themethodology that we propose can
be applied to more general distributions and estimation procedures such as maximum likelihood or Bayesian estimation.
The generalized profiling methodology that we propose for the estimation of λ has already been used by Cao and Ramsay
(2007) for the estimation of location parameter β, and by Ramsay et al. (2007) for the estimation of the operator parameter
γ , and to keep the exposition as simple as possible, wewill consider both β and γ , if required, as known. Further background
for the problem is available in Ramsay and Silverman (2005).
We extend the penalized spline smoothing to estimate spatially heterogeneous regression functions, where the

smoothing parameter λ(t) is a function that changes along with the curvature of regression functions. This procedure is
called adaptive penalized smoothing. Fig. 1 illustrates the type of regression problems where adaptive penalized smoothing
may be beneficial. We want to estimate, from noisy observations, multiple functions µj, j = 1, . . . ,N , that have sharp
curvature over one or more small regions and rather mild curvature elsewhere. It seems reasonable to enforce a much
lower level of smoothness in the neighborhoods with high curvature. The adaptive smoothing parameter estimate can be
seriously improved when a sample of N curves are to be estimated, all having such sharp features in similar regions. A
single adaptive smoothing parameter is estimated from observations for the N curves, incorporates the similarities of these
curves. The vectors of basis coefficients are different for each curve, capturing the specificity of each curve. Fig. 2 displays
the logarithm of an adaptive smoothing parameter found by applying our method to the curves in Fig. 1, which does just
what is required.
The adaptive smoothing is implemented by defining the penalty functional PEN(xj) as

PEN(xj) =
∫
Ω

λ(t)‖Lγxj(t)‖2dt. (1)

The penalty PEN(xj) is defined by a possibly nonconstant weight function λ(t) > 0. Permitting λ to be a function rather the
usual practice of regarding λ as a constant allows the possibility that a stronger penaltymay be appropriate for some regions
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Fig. 2. The functional smoothing parameter estimates changes with the spatial heterogeneity of curves shown in Fig. 1. The solid line is the median of
the estimated functional smoothing parameter ω(t) = ln λ(t). The dashed lines are the 25% and 75% quantiles of the estimated functional smoothing
parameter ω(t). The dotted straight line is the estimated constant ω = ln λ in global penalized smoothing.

inΩ where the behavior ofµj is close to being in the null space or kernel of Lγ than for other regions. For example, if L = D2
(the classic choice defining cubic spline smoothing), it may be thatµj is nearly linear over some regions, where its estimate
can be heavily penalized relative to penalties applied over other regions where it displays a strong second derivative.
The primary contribution of our paper is to obtain confidence regions for estimates of µj that take into account the

uncertainty passed along to these estimates by any data-driven approach to choose the amount of smoothing. The usual
practice of ignoring this uncertainty in estimating confidence regions (Gu, 2002) becomes problematic when the estimated
smoothing parameters, such as that shown in Fig. 2, require multiple parameters to define.
There is a considerable literature on adaptive smoothing within the contexts of kernel and local polynomial smoothing

methods (Hardle and Bowman, 1983; Staniswalis, 1989; Friedman and Silverman, 1989; Vieu, 1991; Brockmann et al., 1993;
Eubank and Speckman, 1993; Fan and Gijbels, 1995; Fan et al., 1996; Lepski et al., 1997; Herrmann, 1997), among others).
Boularan et al. (1995) and Nunez-Anton et al. (1999) took into account a possible common structure of a family of curves
and estimated these curves with nonparametric kernel smoothing techniques. To apply adaptive smoothing techniques to
spline estimates, Nychka (1995) linked the splinemethodwith the kernel smoothing by showing in theories that the absolute
value of the spline weight function decreased exponentially away from its center. Ruppert and Carroll (2000) considered
the spatial heterogeneity of the regression function and proposed to penalize the P-spline coefficients adaptively. They
estimated the standard error of the regression function with the empirical Bayesian method, which ignored the uncertainty
of the smoothing parameter estimate. Baladandayuthapani et al. (2005) constructed a Bayesian version of this local penalty
method, and estimated the regression function and the smoothing parameter simultaneously. Their method can require
intensive computation, and it may be hard to implement for the Naive users without the Bayesian Background.
Our adaptive penalized spline smoothing method has three unique aspects. First, the smoothing parameter is a function,

which can be adapted to the spatial heterogeneity of the data. Second, we estimate the regression curves and the functional
smoothing parameter in two nested levels of optimization. This approach is able to converge more easily than the
simultaneous estimation approach, and the computation is also faster than the Bayesian method. Finally, the variance
estimate for the regression curves includes the uncertainty in the estimate of the functional smoothing parameter.
Our paper is organized as follows. Section 2 introduces the generalized profilingmethod for the nuisance and complexity

parameter estimates. Section 3 introduces the modified delta method applied to estimate the standard errors for parameter
estimates, which include the uncertainty of other parameter estimates. Section 4 compares our modified delta method
and the empirical Bayesian method in the standard error estimates for the regression function by simulation. The adaptive
penalized spline smoothing method is also compared with the global penalized spline smoothing method, the global kernel
smoothing method and the local kernel smoothing method. Section 5 illustrates the adaptive penalized smoothing method
with an application. Section 6 contains discussion and conclusions.

2. Generalized profiling estimation for parameters

Our general setup in the previous section specifies three classes of parameters that require estimation from the n =
∑
j nj

scalar data values. The N coefficient arrays cj have the usual characteristics of nuisance parameters. First of all, their number
tends to be design-dependent in the sense that the more data that one has per curve, the larger the number Kµ of basis
functions that one is likely to use, and this is especially the case if the common practice in using spline bases of placing a
knot at each value tij is followed. Secondly, the actual value of any specific coefficient cjk is seldom of great interest; rather
the coefficients are required to model a type of variation in the data that cannot be ignored. Moreover, it may be desirable
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to consider them as randomly sampled in a multilevel sampling structure. Finally, the sheer number of coefficients to be
estimated is typically far larger than the parameters in the next two classes that we now consider.
The parameters in β and γ are, on the other hand, structural parameters of the classic sort; they are of fixed and limited

dimensionality, are often the primary focus in the data analysis, and are typically viewed as fixed in multilevel designs. The
functional smoothing parameter λ(t) is estimated with the expansion after the logarithm transformation:

λ(t) = exp[ω(t)], where ω(t) = θ′ψ(t),

whereψ(t) is a vector of Kω basis functions. The parameter vector θ who defines λ(t) seems to have a status of its own. First
of all, like structural parameters, it will be only in a small dimension; but, like the coefficients, it may also have some design
dependency because large amounts of data per curve and large numbers of curves will probably tempt users to employ a
richer basis. In fact, θ has some of the character of random effects variance parameters in multilevel designs, and for this
reason we call it themodel complexity parameter.
The central idea behind the generalized profiling method or the parameter cascade notion described in Cao and

Ramsay (2007) and Ramsay et al. (2007) is to treat these three parameter classes in quite different ways through the
use of a multicriterion optimization approach. We describe this approach in this section, where we assume that the
variance–covariance matrices Σj, j = 1, . . . ,N , are known. As we have indicated above, in order to focus on the role of
the complexity parameters θ, we will further simplify our situation by assuming that the structural parameters β and γ are
either known or are not present in the problem at hand.
Conditional on current values for θ, and consistent with the assumption of multinormally distributed residual vectors εj,

we employ in the analyses reported in this paper the criterion

H(cj|θ, yj) = ‖yj − x(tj|cj)‖2 +
∫
λ(t)[Lx(t|cj)]2dt, (2)

where vector yj contains the nj values yij and x(tj|cj) contains the corresponding values x(tij|cj), and where

‖yj − x(tj|cj)‖2 = [yj − x(tj|cj)]′Wj[yj − x(tj|cj)]

for some known order nj weighting matrixWj such asWj = Σ−1j . More generally, however, the loss function in the first
term of (2) may be a negative log likelihood or any other suitable measure of lack of fit.
Define order Kµ matrix

R =
∫
λ(t)[Lφ(t)][Lφ(t)]′dt,

and let Φj be the nj × Kµ matrix with the ikth element φk(tij). By minimizing H(cj|λ(t), yj), we can estimate the coefficient
vector cj, and in the particular case (2) the optimal value written analytically as

ĉj(λ(t), yj) = [Φ
′

jWjΦj + R]−1Φ′jWjyj. (3)

When
∫
[Lφ(t)][Lφ(t)]′dt is an identity matrix, and λ(t) is a step function defined as λ(t) = λkwhen t ∈ {t : φk(t) > 0},

k = 1, . . . , Kµ, then the criterion (2) reduces to

H∗(cj|λ(t), yj) = ‖yj − x(tj|cj)‖2 +
Kµ∑
k=1

λkc2jk,

which is the adaptive smoothing criterion proposed by Ruppert and Carroll (2000).
The optimal functional smoothing parameter λ̂(t) can be chosen by minimizing a complexity measure such as the

generalized cross-validation (GCV, Wahba, 1985)

GCV(λ(t)) =
[

n
dfe(λ(t))

] [
SSE(λ(t))
dfe(λ(t))

]
,

where n =
∑
j nj, both the degrees of freedommeasure dfe(λ(t)), and the sum of squared errors SSE(λ(t)) can be written

in terms of the order nj matrix Aj(λ(t)) = Φj(Φ′jWjΦj + R)−1Φ′jWj:

dfe(λ(t)) = n−
N∑
j=1

Tr[Aj(λ(t))];

SSE(λ(t)) =
N∑
j=1

{y′j[I − A(λ(t))]′[I − A(λ(t))]yj}.

Note that GCV(λ(t)) only depends on λ(t); ĉ(λ(t)) = (ĉ1(λ(t))′, . . . , ĉN(λ(t))′)′ has disappeared from the problem because
the conditional solution (3) defines it as a function of λ(t). Wemay call ĉ[λ(t)] an estimating function, and its role is to act as
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a pipeline or conduit that channels the fitting power defined by a λ(t)-function into local fitting parameters ĉjk[λ(t)], which
is the kth element of ĉj[λ(t)]. That is, λ(t) is like a water reservoir that is used to irrigate a crop, and ĉ(λ(t)) is the irrigation
system that transports the water to various areas in the field, where ĉjk(λ(t)) sprinkles the growing seedlings, namely the
yj’s, in sphere of influence of each basis function k. If our basis were of the Fourier type, then the locations would be defined
in terms of frequency, if wavelets, in terms of locations on the frequency/time plane, and so on.
In the adaptive spline smoothing framework, there are two kinds of parameters: the nuisance parameter cj and the

complexity parameter θ. They are estimated in two nested levels of optimization. In the inner optimization level where we
minimize H(cj|θ, yj), the nuisance parameter cj is estimated conditional on θ and yj, and thus the conditional estimate ĉj
can be treated as a function of θ and yj. In the outer optimization level, denote F(ĉ(θ, y), θ, y) to be the outer optimization
criterion, which is GCV in this article. The nuisance parameter ĉ is removed from the parameter space as a function of θ and
y. The complexity parameter θ is then estimated by minimizing F(ĉ(θ, y), θ, y).
The functional relationship between the nuisance and complexity parameters allows us to calculate the gradient

and Hessian matrix analytically in both levels of optimization, which is essential for fast computation. Denote
dF(ĉ(θ, y), θ, y)/dθ to be the total derivative of F(ĉ(θ, y), θ, y)with respect to θ, then we have

dF(ĉ(θ, y), θ, y)
dθ

=
∂F(ĉ(θ, y), θ, y)

∂θ
+
∂F(ĉ(θ, y), θ, y)

∂ ĉ
∂ ĉ
∂θ
.

The derivative ∂ ĉ/∂θ is required in the above formula, and it is also crucial for the variance estimation of parameters. When
ĉ is an implicit function of θ, the Implicit Function Theorem is applied as follows. The estimate ĉ satisfies ∂H(c|θ, y)/∂c = 0,
and consequently

d
dθ

(
∂H(c|θ, y)

∂c

∣∣∣∣
ĉ

)
=
∂2H(c|θ, y)
∂c∂θ

∣∣∣∣
ĉ
+
∂2H(c|θ, y)

∂c2

∣∣∣∣
ĉ

∂ ĉ
∂θ
= 0. (4)

If it can be assumed that
∣∣∂2H(c|θ, y)/∂c2|ĉ∣∣ 6= 0, then we have

∂ ĉ
∂θ
= −

[
∂2H(c|θ, y)

∂c2

∣∣∣∣
ĉ

]−1 [
∂2H(c|θ, y)
∂c∂θ

∣∣∣∣
ĉ

]
.

3. Interval estimation for parameters

By considering the functional relationship between the nuisance and structural parameters, we can obtain their
unconditional variance estimates by the Delta method.
Let µ be the expectation of y, then we can approximate θ̂ as a function of ywith the first order Taylor expansion:

θ̂(y) ≈ θ̂(µ)+

[
dθ̂
dy

∣∣∣∣∣
y=µ

]
(y− µ). (5)

Taking variance on both sides of (5), we can approximate the variance of θ̂:

Var[θ̂(y)] ≈

[
dθ̂
dy

∣∣∣∣∣
y=µ

]
Σ

[
dθ̂
dy

∣∣∣∣∣
y=µ

]′
,

whereΣ is the variance–covariance matrix for y. Wahba (1983) estimates it by:

Σ̂ =
SSE(θ̂)

dfe(θ̂)
· I.

The derivative of dθ̂/dy can also be calculated by the Implicit Function Theorem. The estimate θ̂ satisfies
dF(ĉ(θ, y), θ, y)/dθ = 0. We take the y-derivative on both sides of the identity dF(ĉ(θ, y), θ, y)/dθ|

θ̂,y = 0, and attain:

d
dy

(
dF
dθ

∣∣∣∣
θ̂,y

)
=
d2F
dθdy

∣∣∣∣
θ̂,y
+
d2F

dθ2

∣∣∣∣
θ̂,y

dθ̂
dy
= 0, (6)

where

d2F

dθ2
=
∂2F

∂θ2
+
∂2F
∂ ĉ∂θ

∂ ĉ
∂θ
+

(
∂ ĉ
∂θ

)′
∂2F

∂ ĉ2
∂ ĉ
∂θ
+
∂F
∂ ĉ
∂2ĉ
∂θ2

, (7)

and

d2F
dθdy

=
∂2F
∂θ∂y

+
∂2F
∂ ĉ∂y

∂ ĉ
∂θ
+
∂2F
∂θ∂ ĉ

∂ ĉ
∂y
+
∂2F

∂ ĉ2
∂ ĉ
∂y
∂ ĉ
∂θ
+
∂F
∂ ĉ

∂2ĉ
∂θ∂y

. (8)
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Fig. 3. The global penalized smoothing curves (black solid lines) with the 95% confidence intervals (black dashed lines). The red solid lines indicate the true
curves µ(t) = 1/3β10,5(t)+ 1/3β7,7(t)+ 1/3β5,10(t), t ∈ [0, 1]. The simulation is explained in detail in Section 4.1. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Note that the final terms in (7) and (8) are products of a vector and a three-way array or tensor with the inner product being
taken across the vectors’ index. The calculations for ∂ ĉ/∂y, ∂2ĉ/∂θ2 and ∂2ĉ/∂θ∂y are given in Appendix A.
The first derivative of θ̂ with respect to y is acquired by solving (6):

dθ̂
dy
= −

[
d2F

dθ2

∣∣∣∣
θ̂,y

]−1 [
d2F
dθdy

∣∣∣∣
θ̂,y

]
.

Similarly, the sampling variance of ĉ(θ̂(y), y) is

Var[ĉ(θ̂(y), y)] ≈
[
dĉ
dy

]
Σ

[
dĉ
dy

]′
,

where
dĉ
dy
=
∂ ĉ

∂ θ̂

dθ̂
dy
+
∂ ĉ
∂y
.

If we do not consider the functional relationship between ĉ and θ̂, we will obtain the conditional sampling variance for ĉ

Var[ĉ|θ̂, y] ≈
∂ ĉ
∂y
Σ

(
∂ ĉ
∂y

)′
. (9)

The conditional sampling variance Var[ĉ|θ̂, y] underestimates the variance of ĉ, because it ignores the uncertainty of θ̂. The
pointwise estimate for the standard error of x(t) is given by

σ̂ 2x (t) = φ
′(t)

(
dĉ
dy

)
Σ̂

(
dĉ
dy

)′
φ(t).

4. Simulations

4.1. A simulated global penalized smoothing problem

One function in the example of Wahba (1983), which is µ(t) = 1/3β10,5(t) + 1/3β7,7(t) + 1/3β5,10(t), t ∈ [0, 1],
is used to generate 1000 simulated data sets by adding Gaussian noise with a standard deviation of 1 to 129 equally
spaced points in [0, 1]. Here βa,b(t) indicates the Beta probability density function with parameters a and b. Fig. 3 displays
a typical set of noisy data. The estimate for ω = ln(λ) is −4.0 with 95% confidence interval [−6.8,−1.2]. Although
the data have a large scale of noise, the regression function estimated with the global penalized smoothing is close to
the true function. Fig. 3 also shows the point confidence interval for the regression functions, which is calculated by
[µ̂(t) − 1.96 ∗ σ̂µ(t), µ̂(t) + 1.96 ∗ σ̂µ(t)]. We define the coverage probability as the percentage of the values of the
true function at 129 points covered by the pointwise confidence intervals, averaged over 1000 simulations. The coverage
probability is 94.6% when the confidence interval calculated with the generalized profiling method, while the empirical
Bayesian method only leads to 91.5% coverage probability. This is because our standard error estimate σ̂µ(t) includes the
uncertainty of the smoothing parameter estimates.
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Fig. 4. The adaptive penalized smoothing curves (black solid lines) with the 95% confidence intervals (black dashed lines). The red solid lines indicate the
true curves. The simulation is explained in detail in Section 4.2. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 5. The bias and root mean squared error of the adaptive penalized smoothing curves, which are averaged over four curves. The black solid line
corresponds to adaptive penalized spline smoothing, the black dashed lines correspond to global spline penalized smoothing, the blue dashed lines
correspond to global kernel smoothing, and the blue solid lines correspond to local kernel smoothing. The simulation is explained in detail in Section 4.2.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4.2. A simulated adaptive smoothing problem

Four spatially heterogeneous curves are generatedwith formsµi = a1i exp(−400(t−0.6)2)+a2i exp(−500(t−0.75)2)+
a3i exp(−500(t − 0.9)2), where a1i ∼ Normal(1, 0.12), a2i ∼ Normal(5/3, 0.12), a3i ∼ Normal(2, 0.12), i = 1, . . . , 4,
t ∈ [0, 1]. These functions are suspected to be better estimatedwith the adaptive penalized smoothing approach, since they
show different level of smoothness in the whole region, flat when t < 0.5, but rough when t ≥ 0.5. 1000 simulated data
sets are generated by adding Gaussian noise with a standard deviation of 0.5 to 300 equally spaced points drawn from each
of the four functions.
Fig. 1 displays a typical set of simulated observations along with the true curves. The regression functions are expanded

with cubic B-splineswith 40 equally spaced knots.We report results for the smoothing parameterω(t) defined as a constant
and as a cubic B-spline basis expansion with interior knots placed at 0.5, 0.6, 0.75 and 0.9. Fig. 2 shows that the estimated
functional smoothing parameter ω̂(t) = ln(λ̂(t)) ranges from its lowest value of about −13 in [0.5, 1] to 3 in [0 0.5). The
traditional penalized smoothing, corresponding to ω̂ = ln(λ̂) = −11, by comparison, over-smooths slightly on the right
side but under-smooths drastically on the left side. Fig. 4 shows that the adaptive penalized smoothing provides a good
estimate of µi(t), even in the region of high curvature.
The adaptive penalized spline smoothing method is compared with the global penalized spline smoothing method, the

global kernel smoothing method and the local kernel smoothing method. Fig. 5 displays the pointwise bias, root mean
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Fig. 6. The median of standard error estimates for the first curve µ1(t) over 100 simulations. The black solid line indicates the median of standard error
estimates from the modified delta methods. The blue solid line indicates the median of standard error estimates from the empirical Bayesian method
(Ruppert and Carroll, 2000). The red solid line indicates the empirical standard deviation of the adaptive penalized smoothing curves. The black dashed
lines indicates the 25% and 75% quantiles of standard error estimates from the modified delta methods. The simulation is explained in detail in Section 4.2.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The horizontal variable, range, is the distance of an object to the laser source. The vertical variable, logratio, is the logarithm of the ratio of received-
signal frequencies on and off the resonance frequency of mercury. The solid and dashed lines are the regression functions estimated by adaptive and
non-adaptive penalized smoothing, respectively.

squared error (RMSE) of the curve estimates using the four methods over 1000 simulations. The adaptive penalized spline
smoothing method leads much smaller pointwise RMSE on the left side and slightly smaller pointwise bias on the right side
than the other three methods.
The estimated standard error σ̂x(t) of the curve shown in the top left panel of Fig. 1 is shown in Fig. 6, where we see

that the empirical standard deviation for the fitted curves is close to the median of the estimated standard errors. Fig. 6
also shows that the median of standard error estimates from the empirical Bayesian method (Ruppert and Carroll, 2000)
is smaller than the empirical standard deviation for the fitted curves because they ignore the uncertainty of the estimates
for the functional smoothing parameter. The same conclusion are obtained for the estimated standard errors of other three
curves in Fig. 1.

5. Application

The LIDAR (Light Detection and Ranging) is an optical remote sensing technology which measures the distance of an
object by measuring the time delay between sending a laser-emitted light and detecting the reflected signal (Sigrist, 1994).
LIDAR technology has a wide application in geology, atmospheric physics, and a host of other areas.
Fig. 7 displays a typical LIDAR data set, whichwas taken fromHolst et al. (1996) and Ruppert and Carroll (2000). The range

is the distance of an object to the laser source, and the ordinate is the logarithm of the ratio of received-signal frequencies on
and off the resonance frequency of mercury. The regression function is expanded with cubic B-splines with one knot placed
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Fig. 8. The top panel shows the optimal adaptive smoothing parameter (the solid line)with its 95% confidence interval (dashed lines). The optimal constant
smoothing parameter is shown as the dotted line. The bottom panel displays the standard errors for the adaptive estimate of the regression function when
we include or ignore the uncertainty of the estimate for the adaptive smoothing parameter, which are plotted with solid and dashed lines, respectively.

Fig. 9. The top panel shows the derivatives of the regression functions estimatedwith adaptive smoothing (solid line) and non-adaptive smoothing (dashed
line), respectively. The bottom panel displays the standard errors for the derivatives of the adaptive regression function when including or ignoring the
uncertainty of the estimate for the adaptive smoothing parameter, which are plotted with solid and dashed lines, respectively.

on the ith quantile of the range, i = 0, 1%, 2%, . . . , 100%. The functional smoothing parameter ω(t) = ln(λ(t)) is expanded
using cubic B-splines with 4 interior knots on the 50%, 60%, 75% and 99% quantiles of the range. We do not put interior knots
in the left side of the range, since the logratio has a flat trend in that interval. The solid and dashed lines are the regression
functions estimated by adaptive and non-adaptive penalized smoothing respectively. The two lines are close to each other,
except that the non-adaptive regression function has a small bump in the range [500, 550].
The top panel in Fig. 8 shows the optimal adaptive smoothing parameterwith its 95% confidence interval. Comparedwith

the optimal constant smoothing parameter (the dotted line), the functional smoothing parameter is larger in the left side
and smaller in the right side. So we have a larger penalty in the left side for the regression function, and consequently we
obtain a more smooth regression function with the adaptive penalized smoothing, which correctly reflects the LIDAR data.
The bottom panel in Fig. 8 displays the standard error of the regression function using adaptive smoothing, which includes
the uncertainty of the adaptive smoothing parameter estimates and is larger than that obtainedwith the empirical Bayesian
method (Ruppert and Carroll, 2000).
It is also of scientific interest to estimate the first derivative of the regression function, x′(t) (Ruppert et al., 1997). The

top panel in Fig. 9 displays the derivatives of the regression functions estimated with adaptive smoothing, which has a
sharper peak and less variability in the flat areas than that obtained with non-adaptive smoothing. It is also positive in the
whole interval of the range, which is meaningful as a concentration function. The standard error for the adaptive regression
function is shown in the bottom panel of Fig. 9, which is also larger than that obtained with the empirical Bayesian method
(Ruppert and Carroll, 2000), which ignores the uncertainty of adaptive smoothing parameter estimates.
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6. Discussion and conclusions

The idea of treating the complexity controller λ, or, preferably, ω = ln λ, as a parameter to be estimated from the data
is hardly new (Gu, 2002), and the usual method of optimizing the GCVmeasure with c re-estimated with each new trial λ
value is essentially the profiling process that we have outlined. However, by considering the structural parameter space to
be unidimensional in the constant λ situation, we have been able to develop useful interval estimates for both λ and the
coefficient vector c(λ) on which it depends. The latter estimates are superior to the usual conditional estimate in taking
account of the uncertainty in the λ estimate that defines them. In our simulation results, the coverage of these new interval
estimates seems quite reasonable.
Within this framework, it is natural to consider λ to be a higher dimensional parameter, and we see that adaptive

penalized smoothing defined in this way can bring important benefits by applying less smoothing where there is more
curvature, and more where the curvature is minimal.
The adaptive penalized smoothing problem thatwe have considered here is somewhat special in thatλ(t) controlsmodel

complexity, and consequently it is critical to use an outer optimization criterion that measures the complexity of x(t) in a
way that ismathematically independent of the total lack of fit. TheGCV criterion as usually defined cannodoubt be improved
in this regard when adaptive penalized smoothing is used, and this is a subject for further research.
The penalized smoothing problem involves both the nuisance and structural parameters. We propose the generalized

profiling method to estimate these two different types of parameters in two levels of optimization, allowing a different
criterion in each level. We consider the functional relationship of nuisance and structural parameters, which is the key for
decreasing the computation load and finding the unconditional variance estimates. We also want to propose this approach
to the treatment of nuisance parameters in amuchwider context. Problems of this nature are found everywhere in statistics,
and include, for example, multilevel linear models and psychometric models.
All of the results in this paper have been generated by programming in the Matlab computing language, making use of

functional data analysis software intended to compliment Ramsay and Silverman (2005). A general function for adaptive
smoothing with an example is available from the URL: http://www.stat.sfu.ca/~cao/Research.html.
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Appendix A. Derivative calculations for estimating variances of global and local parameters

The formulas (7) and (8) for d2F/dθ2 and d2F/dθdy involve the terms ∂ ĉ/∂y, ∂2ĉ/∂θ2 and ∂2ĉ/∂θ∂y. In the following, we
derive the formulas for these three terms.
We introduce the following convention, which is called Einstein Summation Notation. If a Latin index is repeated in a term,

then it is understood as a summation with respect to that index. For instance, instead of the expression
∑
i aixi, we merely

write aixi.

•
∂ ĉ
∂y
Since the optimal nuisance parameter vector ĉ satisfying ∂H(c|θ, y)/∂c = 0, and ĉ is a function of θ and y, we can

take the y-derivative on ∂H(c|θ, y)/∂c|ĉ = 0 as follows:

d
dy

(
∂H(c|θ, y)

∂c

∣∣∣∣
ĉ

)
=
∂2H(c|θ, y)
∂c∂y

∣∣∣∣
ĉ
+
∂2H(c|θ, y)

∂c2

∣∣∣∣
ĉ

∂ ĉ
∂y
= 0, (A.1)

which holds since ∂H(c|θ, y)/∂c|ĉ is a function of y that is identically 0. Assuming that
∣∣∂2H(c|θ, y)/∂c2|ĉ∣∣ 6= 0, from the

Implicit Function Theorem we obtain

∂ ĉ
∂y
= −

[
∂2H(c|θ, y)

∂c2

∣∣∣∣
ĉ

]−1 [
∂2H(c|θ, y)
∂c∂y

∣∣∣∣
ĉ

]
. (A.2)

•
∂ ĉ2
∂θ∂y
We take the yk-derivative on both sides of Eq. (4):

d2

dθdyk

(
∂H(c|θ, y)

∂c

∣∣∣∣
ĉ

)
=
∂3H(c|θ, y)
∂c∂θ∂yk

∣∣∣∣
ĉ
+
∂3H(c|θ, y)
∂c∂θ∂ci

∣∣∣∣
ĉ

∂ ĉi
∂yk

+
∂3H(c|θ, y)
∂c2∂yk

∣∣∣∣
ĉ

∂ ĉ
∂θ
+
∂3H(c|θ, y)
∂c2∂ci

∣∣∣∣
ĉ

∂ ĉi
∂yk

∂ ĉ
∂θ
+
∂2H(c|θ, y)

∂c2

∣∣∣∣
ĉ

∂2ĉ
∂θ∂yk

= 0. (A.3)

http://www.stat.sfu.ca/~cao/Research.html
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Solving for ∂2 ĉ
∂θ∂yk

, we obtain the second derivative of ĉwith respect to θ and yk:

∂2ĉ
∂θ∂yk

= −

[
∂2H(c|θ, y)

∂c2

∣∣∣∣
ĉ

]−1 [
∂3H(c|θ, y)
∂c∂θ∂yk

∣∣∣∣
ĉ
+
∂3H(c|θ, y)
∂c∂θ∂ci

∣∣∣∣
ĉ

∂ ĉi
∂yk

+
∂3H(c|θ, y)
∂c2∂yk

∣∣∣∣
ĉ

∂ ĉ
∂θ
+
∂3H(c|θ, y)
∂c2∂ci

∣∣∣∣
ĉ

∂ ĉi
∂yk

∂ ĉ
∂θ

]
(A.4)

•
∂2 ĉ
∂θ2

Similar to (A.4), the second partial derivative of cwith respect to θ and θj is:

∂2ĉ
∂θ∂θj

= −

[
∂2H(c|θ, y)

∂c2

∣∣∣∣
ĉ

]−1 [
∂3H(c|θ, y)
∂c∂θ∂θj

∣∣∣∣
ĉ
+
∂3H(c|θ, y)
∂c∂θ∂ci

∣∣∣∣
ĉ

∂ ĉi
∂θj

+
∂3H(c|θ, y)
∂c2∂θj

∣∣∣∣
ĉ

∂ ĉ
∂θ
+
∂3H(c|θ, y)
∂c2∂ci

∣∣∣∣
ĉ

∂ ĉi
∂θj

∂ ĉ
∂θ

]
. (A.5)

Appendix B. Matrix calculations for adaptive penalized smoothing

We provide here the results required for estimates of pointwise standard errors of the complexity function ω(t) in
adaptive penalized smoothing (Section 4). In order to simplify notation, we define the order Kc matrix B(λ) = Φ′WΦ + R
and order n matrix A(λ) = ΦB(λ)−1Φ′W. To make the mathematical formula more readable, we assume the number to
curve N = 1. Then we can express SSE(λ) and degrees of freedommeasure dfe(λ) in terms of the matrix A:

SSE(λ) = y′[I − A(λ)]′[I − A(λ)]y
dfe(λ) = n− trace(A(λ)).

In what follows, we suppress the explicit dependence of these three matrices on λ and the parameter vector θ in order to
keep the notation readable.

• The first derivatives with respect to the ω(t) basis coefficient θl of these three matrices are:

∂R
∂θl
=

∫
λ(t)ψl(t)[Lφ(t)][Lφ(t)]′dt

∂B−1

∂θl
= −B−1

∂R
∂θl

B−1

∂A
∂θl
= Φ

∂B−1

∂θl
Φ′W.

• The second derivatives with respect to the smoothing function basis coefficients θl and θi are:

∂2R
∂θl∂θi

=

∫
λ(t)ψi(t)ψl(t)[Lφ(t)][Lφ(t)]′dt

∂2B−1

∂θl∂θi
= −

∂B−1

∂θi

∂R
∂θl

B−1 − B−1
∂2R
∂θl∂θi

B−1 − B−1
∂R
∂θl

∂B−1

∂θi

∂2A
∂θl∂θi

= Φ
∂2B−1

∂θl∂θi
Φ′W.

• The first derivative of GCV(λ(t)|y)with respect to ω(t) basis coefficient θl is

∂GCV(λ)

∂θl
= n

[
dfe

∂SSE

∂θl
− 2SSE

∂dfe

∂θl

]
dfe−3 (B.1)

where
∂dfe(λ)

∂θl
= −trace

(
∂A
∂θl

)
∂SSE(λ)

∂θl
= −y′

([
∂A
∂θl

]′
[I− A] + [I− A]′

[
∂A
∂θl

])
y.
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• The second derivative of GCV(λ(t)|y)with respect to ω(t) basis coefficients θl and θj is

∂2GCV(λ)

∂θl∂θj
=

n
dfe2

∂2SSE

∂θl∂θj
−
2nSSE

dfe3
∂2dfe

∂θl∂θj
+
6nSSE

dfe4
∂dfe

∂θl

∂dfe

∂θj

−
2n

dfe3

[
∂dfe

∂θl

∂SSE

∂θj
+
∂dfe

∂θj

∂SSE

∂θl

]
(B.2)

where
∂2SSE(λ)

∂θl∂θj
= y′(E ′ + E)y

∂2dfe(λ)

∂θl∂θj
= −trace

(
∂2A
∂θl∂θj

)
and

E =
[
∂A
∂θl

]′ [
∂A
∂θj

]
−

[
∂2A
∂θl∂θj

]′
[I− A].

• The second derivative of GCV(λ(t)|y)with respect to ω(t) basis coefficients θl and y is

∂2GCV(λ)

∂θl∂y
= n

[
dfe

∂2SSE

∂θl∂y
− 2

∂SSE

∂y
∂dfe

∂θl

]
dfe−3 (B.3)

where
∂SSE(λ)

∂y
= 2[I− A]′[I− A]y

∂2SSE(λ)

∂θl∂y
= −2

{[
∂A
∂θl

]′
[I− A] + [I− A]′

∂A
∂θl

}
y.

• The sampling variance of ω(t) = ln λ(t) is estimated by:

Var(ω(t)) =
(
dω
dy

)
Σ

(
dω
dy

)′
(B.4)

where

dω
dy
= ψ(t)′

(
dθ
dy

)
and

dθ
dy
=

[
∂2GCV(λ)

∂2θ

]−1
∂2GCV(λ)

∂θ∂y
.

• Since the estimated curve x̂(t) = ĉ′φ(t), we can estimate the sampling variance of x̂(t) by

Var[x̂(t)] = φ′(t)Var(ĉ)φ(t). (B.5)

where

Var[ĉ] =
(
dĉ
dy

)
Σ

(
dĉ
dy

)′
,

dĉ
dy
= B−1Φ′W+

∑
l

dĉ
dθl

dθl
dy
,

and
dĉ
dθl
=
dB−1

dθl
Φ′Wy.
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