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Linear Mixed-Effects Modeling
by Parameter Cascading

J. CAO and J. O. RAMSAY

A linear mixed-effects model (LME) is a familiar example of a multilevel parameter structure involving nuisance and structural parameters,
as well as parameters that essentially control the model’s complexity. Marginalization over nuisance parameters, such as the restricted
maximization likelihood method, has been the usual estimation strategy, but it can involve onerous and complex algorithms to achieve the
integrations involved. Parameter cascading is described as a multicriterion optimization algorithm that is relatively simple to program and
leads to fast and stable computation. The method is applied to LME, where well-developed marginalization methods are already available.
Our results suggest that parameter cascading is at least as good as, if not better than, the available methods. We also extend the LME model
to multicurve data smoothing by introducing a basis partitioning scheme and defining roughness penalty terms for both functional fixed
effect and random effects. The results are substantially better than those obtained by using the previous LME methods. A supplemental
document is available online.
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nents.

1. INTRODUCTION

This paper investigates the performance of a parameter esti-
mation paradigm that we call parameter cascading for models
having a multilayered parameter structure. Multilevel parame-
ter structures arise when a large number of nuisance parameters
are required to capture local effects, in addition to structural pa-
rameters with more global implications for the model whose
values are of primary interest. The use of regularization or
smoothing methods also introduces parameters that control the
overall complexity of a model, and may therefore also be con-
sidered in a parameter layer of their own. Parameter cascading
allows users to choose different optimization criteria for each
parameter level, and the sequential optimization of these var-
ious criteria induces a set of functional relationships between
parameters at lower layers and higher-level parameters.

We evaluate parameter cascading within the important con-
text of linear mixed-effects (LME) structures, where a number
of other methods are already available to provide performance
benchmarks. Since marginalization is widely used for the elimi-
nation of nuisance parameters defining random effects for clus-
tered data, the paper also considers whether parameter cascad-
ing brings important improvements at a computational level,
and whether efficient sampling variance estimates that are not
conditioned on covariance, smoothing or bandwidth estimates
are possible.

Many authors have proposed that nonparametric and semi-
parametric smoothing methods may be recast as linear mixed-
effects models, and therefore applied to data using linear mixed-
effects software. Perhaps the most substantial early applica-
tion of this approach to challenging data was Brumback and
Rice (1998), and subsequent treatments include Rice and Wu
(2001), Guo (2002), Ruppert, Wand, and Carroll (2003), Wand
(2003), Morris and Carroll (2006), and Welham et al. (2006).
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We also look at the use of parameter cascading as an approach
to this large class of problems, even though they do not strictly
fall within the random effects variance components estimation
framework that first give rise to LME technology. We propose
a partial or fractional variance components estimation in this
high-dimensional context.

Parameter cascading was first used by Ramsay et al. (2007)
for the estimation of parameters defining dynamical systems,
a context where an explicit expression of the model is usually
not possible. Cao and Ramsay (2007, 2009) applied parameter
cascading to data smoothing with adaptive regularization in or-
der to adjust confidence intervals to take into account the uncer-
tainty in data-determined smoothing parameters. But the central
idea shows up in a wide range of older problems, including the
use of profiling in nonlinear least squares problems discussed in
Bates and Watts (1988), as well as many other texts, and also in
the large literature on the nuisance parameter estimation prob-
lem of Neyman and Scott (1948). Parameter cascading is also
obvious in regularized data smoothing and functional parameter
estimation in functional data analysis (Ramsay and Silverman
2005).

The paper is organized as follows. Section 2 applies parame-
ter cascading to variance components estimation using the lin-
ear mixed-effects model, discusses interval estimation for this
situation, and compares the performance of parameter cascad-
ing to four existing methods with simulations. Section 3 devel-
ops a linear mixed-effects model with partial variance compo-
nents estimation for the multiple-curve data smoothing situa-
tion. Estimating separate levels of smoothing for the fixed and
random effects implies a four-level parameter cascade. A the-
orem is developed to capture the close formal connection be-
tween the marginalization strategy and parameter cascading.
Section 4 provides a real-data analysis involving daily tempera-
tures for 34 years of weather at Vancouver. Section 5 compares
the parameter cascading method with the popular method in es-
timating LME smoothing models using Monte Carlo simula-
tions. Conclusions and discussion are provided in Section 6.
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2. PARAMETER CASCADING FOR
VARIANCE COMPONENTS

We assume the two-level Gaussian linear mixed-effects
model, that is, for i = 1, . . . ,N,

yi = Xiβ + Zibi + εi,

bi ∼ N(0,�), εi ∼ N(0, σ 2
e �i), (1)

where yi = (yi1, . . . , yini) is a vector of measurements associ-
ated with the ith randomly sampled unit. The order q matrix
� defines the structure and size of the between-curve variation
in the random-effect vectors bi. Order ni matrix �i contains
known variances and covariances among residuals. Let p and
q be the lengths of β and bi, respectively. In order to simplify
notation, but without loss of generality, we assume ni = n and
�i = I for i = 1, . . . ,N.

Let X denote the super-matrix constructed by stacking the
matrices Xi on top of one another, and y and ε denote the
corresponding vectors for the yi’s and εi’s, respectively. Let
Z denote the diagonal super-matrix with the Zi matrices in
the diagonal and having Nq columns, and vector b denote the
stacked bi’s. In this notation, we may replace the first equation
by y = Xβ + Zb + ε.

It is a common but perhaps confusing practice to refer to two
quite different situations as a linear mixed-effects model. In the
variance components context, � must be estimated from the
data, implying that q(q + 1)/2 variances and covariances are to
be estimated for � if it is unconstrained. From a computational
perspective, it is preferable to estimate the Choleski factor U of
either � or �−1 in order to ensure at least positive semidefi-
niteness. Pinheiro and Bates (2000) opted for the decomposi-
tion of �−1, and we follow their lead in this paper. It is not al-
ways appreciated by appliers of LME that reasonable precision
in the estimates of these variance components requires that N
be roughly at least 10 times q(q + 1)/2, implying in turn that in
most experimental situations q will not exceed five or so. Spe-
cial structures for �, such as being diagonal or band-structured,
permit only slightly larger values of q in practice. It is the clas-
sic variance components estimation problem that is the focus of
this section.

The second LME context, which can be called smoothing,
involves rather larger values for q, and typically arises when
bi is a set of coefficients for a basis function expansion of a
function designed to smooth a functional observation yi. One is
then obliged to assume that � is a known function of a small
number of parameters. A common example is � = Dσ 2

b , where

matrix D is known, so that only scalar variances σ 2
b and σ 2

e
require estimation. We turn to this context in Section 3, where
we also introduce a hybrid model for variation in bi where � is
estimated within a low-dimensional subspace, and is considered
known in the orthogonal complement space to within a scale
factor.

From the parameter cascading perspective, the random-effect
vector b is a nuisance parameter and the fixed-effect vector β

is a structural parameter. However, the complexity parameter γ

can take various forms. In the variance components situation,
elements of �−1 or its Choleski factor U are considered com-
plexity parameters. In the smoothing context where � = σ 2

b D,

the complexity parameter is γ = σ 2
e /σ 2

b or, in a form more suit-
able for computation, γ = log(σ 2

e /σ 2
b ). In the hybrid model for

the smoothing context that we will use in Section 3, a more
complex four-level parameter cascade will be introduced in-
volving two levels of complexity parameters.

We now assume the variance components estimation con-
text, where � requires estimation, and where it is either un-
constrained, or structured in such a way that multiplication by
a scalar preserves the structure. We define the Choleski factor-
ization

σ 2
e �−1 = UTU. (2)

One referee points out that the Choleski factorization is not
uniquely defined for a given positive-definite matrix, but can be
made unique by requiring its diagonal elements to be all pos-
itive. So here the diagonal elements in U are parameterized in
terms of their logarithms. The complexity parameter is the vec-
tor γ of length q(q + 1)/2, which contains the logarithms of
the diagonal elements of U and the upper off-diagonal elements
of U. The estimate of γ optimizes the complexity criterion de-
fined below. Error variance σ 2

e is estimated separately in a way
specified below as a byproduct of this optimization.

2.1 The Low-Level Nuisance Criterion J

The low-level criterion J is defined as the regularized error
sum of squares

J(b|β,γ ) =
N∑
i

[‖yi − Xiβ − Zibi‖2 + σ 2
e bT

i �−1bi]. (3)

Criterion J is minimized by

b̂i(β,γ ) = (ZT
i Zi + σ 2

e �−1)−1ZT
i (yi − Xiβ).

The above estimate is identical to the best linear unbiased
prediction (BLUP) for random effects (Henderson 1973 and
Robinson 1991). Defining the symmetric b-hat matrix Pbi(γ )

and its complement Qbi(γ ) as

Pbi(γ ) = Zi(ZT
i Zi + σ 2

e �−1)−1ZT
i and

Qbi(γ ) = I − Pbi(γ ),

respectively, leads to the predicted random effects conditional
on β and γ

Zîbi(β,γ ) = Pbi(γ )(yi − Xiβ).

2.2 The Midlevel Structural Criterion H

We define the midlevel criterion H as the least squares. It
drops the second term in the criterion J, because the second
term in J regularizes the random effects bi, and this regula-
tion information is passed to the midlevel criterion H by using
b̂i(β,γ ).

H(β|γ ) =
N∑
i

‖yi − Xiβ − Zîbi(β,γ )‖2

=
N∑
i

‖Qbi(γ )(yi − Xiβ)‖2.
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The minimizer is

β̂(γ ) = C−1(γ )d(γ ),

where

C(γ ) =
N∑
i

XT
i Q2

bi(γ )Xi and

d(γ ) =
N∑
i

XT
i Q2

bi(γ )yi.

This estimate of β̂ is equivalent to the best linear unbiased esti-
mate (BLUE) for fixed effect obtained from Henderson’s equa-
tions (Henderson 1973). The fit to yi is

ŷi = Xiβ̂ + Zîbi(β,γ )

= Qβi(γ )Qbi(γ )yi + Qbi(γ )XiC−1(γ )

N∑
j�=i

XT
j Q2

bj(γ )yj,

where

Pβi(γ ) = Qbi(γ )XiC−1(γ )XT
i Qbi(γ ) and

(4)
Qβi = I − Pβi.

We define the following matrices used to define the effective
degrees of freedom of the model in Section 3.3.

Pi(γ ) = Qβi(γ )Qbi(γ )

= Pβi(γ ) − Pβi(γ )Pbi(γ ) + Pbi(γ ) and

Qi(γ ) = I − Pi(γ ).

2.3 The Top-Level Complexity Criterion G

Since fitting y is a linear operation indexed by γ , it is natural
to use the generalized cross-validation criterion

G(γ ) = GCV(γ ) = nN
SSE(γ )

dfe(γ )2
, (5)

where SSE = ∑
i ‖̂yi − yi‖2, and dfe = ∑

i trace[Qi(γ )]. The
generalized cross-validation criterion is a measure of the trade-
off between model fitting to the data and complexity of the
model, and it can be also used to compare nested or nonnested
LME models. Here numerical optimization is required, and we
use Newton–Raphson iterations with the gradient worked out
analytically.

Wahba (1985) and Gu (2002) suggest estimating the error
variance σ 2

e by

σ̂ 2
e = SSE(γ̂ )

dfe(γ̂ )
.

Equation (2) leads to the estimate for the variance–covariance
matrix of random effects

�̂ = σ̂ 2
e (ÛT Û)−1.

2.4 Estimation of Sampling Variances

We modify a method often used in nonlinear least squares
problems for estimating the sampling variance–covariance ma-
trix for β̂ and γ̂ (Bates and Watts 1988). This approach lin-
earizes the mapping from the data vector y to the parame-
ter space, estimates an assumed parametric distribution for the
residuals ε = y−E[y], and then directly estimates the variance–
covariance matrix for the parameter in question. The process
might be referred to as a linearized parametric bootstrap esti-
mate (Efron and Tibshirani 1993). The novel element here is
the use of the Implicit Function Theorem to compute the lin-
ear approximation to the data-to-parameter map. Of course, lin-
earization in this way is apt to break down if the actual map is
severely nonlinear, and we recommend backing up interval and
confidence regions estimated in this way with some selected
simulations or the conventional bootstrap.

Let μ = E(y). Since the estimate γ̂ is an implicit functions
of y, we can approximate γ̂ (y) with the first-order Taylor ex-
pansion:

γ̂ (y) ≈ γ̂ (μ) +
[

dγ̂

dy

]
y=μ

(y − μ). (6)

We can take variance on both sides of (6), and obtain the ap-
proximation for the variance of γ̂ :

Var[γ̂ (y)] ≈
[

dγ̂

dy

]
y=μ

Var(y)

[
dγ̂

dy

]T

y=μ

.

Since γ̂ is an implicit function of y, and if

Det

(
∂2G

∂γ 2

∣∣∣∣
γ=γ̂

)
�= 0,

we can apply the Implicit Function Theorem to obtain

dγ̂

dy
= −

[
∂2G

∂γ 2

∣∣∣∣
γ=γ̂

]−1[
∂2G

∂γ ∂y

∣∣∣∣
γ=γ̂

]
.

The covariance matrix of data, Var(y), can be estimated as a
block diagonal matrix with the ith diagonal block

Var(yi) ≈ σ̂ 2
e I + Zi�̂ZT

i .

Since the fixed effect β̂ is an explicit function of γ and y, the
unconditional variance estimate for β̂ can also be obtained by

Var[β̂(y)] =
[

dβ̂

dy

]
Var(y)

[
dβ̂

dy

]T

,

where the total derivative of β̂ with respect to y is

dβ̂

dy
= ∂β̂

∂ γ̂

dγ̂

dy
+ ∂β̂

∂y
.

Note that the unconditional variance estimate for β̂ takes into
account the uncertainty resulting from the estimation of γ̂ and
the data y, in contrast to the usual practice of plugging the es-
timate γ̂ into sampling variance estimates as if γ̂ was not ran-
dom.
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2.5 Simulation Results for a Typical Design

We now use simulations to compare the performance of para-
meter cascading (PC) with the positive-definiteness-constrained
restricted maximum likelihood estimates (LME-REML) pro-
vided by the lme() function in both R and S-PLUS, and with
the unconstrained maximum likelihood (UNC-ML) and uncon-
strained restricted likelihood estimation (UNC-REML) for the
linear mixed effects models. Since the design is balanced (p = q
and ni constant), there are closed forms for unconstrained UNC-
ML estimates and UNC-REML estimates, but these offer no
protection against violation of positive semidefiniteness. We
used default convergence criteria for lme() so as to assess the
performance of lme() as it would be used in most applica-
tions.

It is important to note that we, along with Demidenko (2004),
experienced an unacceptable rate of failures to convergence
(36% when N = 10 in our case) with the default optimization
function nlminb in the R version of the function lme, but
when we followed the suggestion of a referee and specified the
optim() function, this problem disappeared. We cannot rec-
ommend the use of the default optimizer in R, and hope that
this serious issue is rectified soon. The S-PLUS version, on the
other hand, performed perfectly.

Demidenko (2004) offered some simulation results for a lin-
ear mixed-effects model defined in (1) with a balanced design.
His parameter values were β1 = 1, β2 = 0.1, σ 2

e = 1, �i = I for
i = 1, . . . ,N,

Xi = Zi =
(

1 1 1 1
1 2 3 4

)T

for i = 1, . . . ,N

and

� =
(

1.0 0.3
0.3 0.5

)
.

These settings resembled the types and values of linear mixed
models often reported in the applied literature. We repeated this
experiment using N = 10, 20, 50, and 100.

The point estimates for the fixed effects with respect to mean,
standard deviation, and mean squared error differed by no more
than one in the third decimal place for all methods and for all
sample sizes N. The differences among methods for the esti-
mation of σe were also trivial for the three methods assuring
positive semidefiniteness of �̂. But UNC-REML and UNC-
MLE σ̂e values had better mean bias (mean 0.988 as opposed
to 0.963) and slightly worse mean squared errors (0.026 versus
0.022) when N = 10, but even these differences disappeared by
N = 20.

Summaries for point estimations for N = 10 for the random
effects variance covariance matrix estimates �̂ are shown in Ta-
ble 1. UNC-REML estimates have the best bias, but both UNC-
REML and UNC-ML estimates have worse mean squared er-
rors due to their larger sampling variances. Even so, the amount
of bias associated with the other three methods is fairly small
considering the small sample size. The results for N = 20, 50,
100 are given in Tables 2–4 in the supplementary file. The bias
in the � estimates considerably improves by N = 20, and is
negligible when N = 50 and 100.

However, along with Demidenko (2004), we note a large per-
centage of � estimates with negative eigenvalues for UNC-ML

Table 1. The means, standard deviations (STD), and mean squared
errors (MSE) for point estimations of linear mixed-effects

models over 1000 simulations using five methods
when the number of subjects N = 10

True PC R S-Plus UNC-REML UNC-ML

�11 1.000 Mean 1.228 1.232 1.227 0.974 0.726
STD 1.029 1.030 1.030 1.219 1.115
MSE 1.110 1.113 1.112 1.485 1.316

�12 0.300 Mean 0.192 0.188 0.191 0.278 0.300
STD 0.411 0.409 0.410 0.476 0.434
MSE 0.180 0.179 0.180 0.226 0.188

�22 0.500 Mean 0.549 0.551 0.550 0.518 0.446
STD 0.306 0.326 0.326 0.340 0.308
MSE 0.096 0.109 0.109 0.116 0.098

NOTE: “PC,” “R,” “S-Plus,” “UNC-REML,” and “UNC-ML” stand for parameter cas-
cading, the lme() function in R using the “optim” optimization option, the lme() func-
tion in S-Plus, unconstrained restricted maximum likelihood, and unconstrained maximum
likelihood, respectively.

and UNC-REML. For example, percentages of negative eigen-
value cases were 55%, 50%, 35%, and 20% for N = 10, 20, 50,
and 100, respectively, for UNC-REML; UNC-ML gives slightly
larger percentages of negative eigenvalue cases.

Table 2 shows the performance of the standard error esti-
mates for fixed effects with the five methods for N = 10. UNC-
REML and UNC-ML have worse coverage probability and
have a slight tendency to underestimate the standard error. The
five methods have negligible differences when N = 20,50,100,
which are displayed in Table 5 of the supplementary file.

In order to increase the range of design and parameter char-
acteristics for which conclusions can be drawn from our simu-
lations, we repeated the simulation study for the parameter cas-
cading method by allowing the constants N and n and parame-
ters β1, β2, σ

2
e and � generated independently and randomly.

The relative performance of the parameter cascading method re-
mained very much as shown above. The result details are given
in Section 1.2 of the supplementary file.

3. PARAMETER CASCADING FOR LME SMOOTHING

The LME model (1) can be adapted to a functional data con-
text in which the data yij arise from a sample of n discrete and
noisy observations of each of N realizations of smooth under-
lying Gaussian random processes. The LME smoothing model
can be written as follows:

yi = μ(ti) + ri(ti) + εi, (7)

where yi and εi are defined as in (1), and ti is the corresponding
vector of measurement locations. The random effects are now
defined as smooth variations ri(t) around a fixed-effect func-
tion μ(t), and these functions can be represented by the basis
function expansions

μ(t) = βTϕ(t) and ri(t) = bT
i φ(t),

where the coefficient vectors and corresponding vectors of ba-
sis functions are of length p for fixed-effect function μ and, for
simplicity only, will be assumed here to be of length q for all
random-effect functions ri. Design matrices Xi and Zi are now
constructed by evaluating basis functions at the points ti of ob-
servation associated with data vector yi. Hybrid designs may
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Table 2. The means, standard deviations (STD), and mean squared errors (MSE) for standard error (SE)
estimations of fixed effects over 1000 simulations when the number of subjects N = 10

ŜE(β̂1) ŜE(β̂2)

Sample STD 0.4847 0.2742

Method Mean STD MSE CP(β1) Mean STD MSE CP(β1)

PC 0.503 0.100 0.010 95.1% 0.271 0.054 0.003 93.1%
R 0.505 0.100 0.010 94.6% 0.266 0.059 0.004 91.9%
S-PLUS 0.505 0.100 0.010 94.5% 0.266 0.060 0.004 91.8%
UNC-REML 0.484 0.114 0.013 92.9% 0.261 0.062 0.004 90.9%
UNC-ML 0.460 0.108 0.012 91.4% 0.247 0.058 0.004 89.4%

NOTE: “PC,” “R,” “S-Plus,” “UNC-REML,” and “UNC-ML” stand for parameter cascading, the lme() function in R using the “op-
tim” optimization option, the lme() function in S-Plus, restricted maximum likelihood, and maximum likelihood, respectively. CP(β1)

and CP(β2) are the coverage probabilities of 95% confidence intervals for β̂1 and β̂2. The 95% confidence intervals is constructed as
[β̂j − 1.96 ∗ ŜE(β̂j), β̂j + 1.96 ∗ ŜE(β̂j)], j = 1,2.

also arise where these design matrices are augmented by con-
ventional covariates and interaction terms, a situation that we
may refer to semiparametric regression for samples of curves.

There is no need for p = q or Xi = Zi, although this will
often be the case. The simple model used to simulate data in
the previous section is in fact just such a situation, where p =
q = 2 and the monomial basis is used for both sets of functions.
However, identifiability issues require special treatment for the
balanced design where Xi and Zi do not vary over records and
where, in addition, p = q ≈ n.

In the functional context, moreover, it can be desirable and
even essential to impose smoothness on the estimated fixed-
effect function μ(t) as well as on the estimates of the functional
random effects ri(t). It can be important to choose these two
smoothing levels independently.

A special feature of LME smoothing is that the complexity
of each curve, captured by the size of p and q, can imply that
N will not likely be large enough relative to q(q + 1)/2 to per-
mit estimating an unrestricted intercurve variance–covariance
matrix �. The usual practice in LME smoothing, illustrated
in Brumback and Rice (1998), is to represent intercurve vari-
ation by a scalar multiplying a symmetric positive definite ma-
trix assumed to be known, but we propose a compromise that
allows for estimating a variance–covariance structure for low-
dimensional functional variation combined with a data-defined
level of smoothing of random functional effects orthogonal to
this low-dimensional subspace. To enable this, we first con-
sider some practical aspects of constructing partitioned basis
systems.

3.1 Basis Partitioning

Because the LME smoothing context can involve large val-
ues of q, we have to settle for the more realistic objective of
studying in detail the functional variation of the random-effect
functions ri within a low-dimensional subspace of dimension s,
where the size of s will depend on the number N of curves that
we have available to estimate this variation.

Much of the early theoretical work on smoothing, repre-
sented in Wahba (1990) and Gu (2002), assumes a basis sys-
tem partitioned into a low-dimensional subspace defined as the
kernel of a linear differential operator and a high dimensional
complement with an inner product defined by this operator, thus

defining a reproducing kernel Hilbert space. Although this is
a powerful framework, daunting mathematical detail and nu-
merical analysis issues have hindered its application. We offer
here a more convenient approach involving a high-dimensional
q-vector of basis functions φ(t) and a low-dimension s-vector
θ(t) = (θ1(t), . . . , θs(t)), s � q such that all functional variation
of a specified character is concentrated with the span of θ(t).

The basis sweep or left-division operator θ\φ is defined to be

θ\φ = φ − Gθ, where
(8)

G =
[∫

φ(t)θT(t)dt

][∫
θ(t)θT(t)dt

]−1

.

The q by s matrix G is the matrix of regression coefficients
for a functional regression of φ on θ , and, consequently,∫

θ(t)[θ\φ(t)]T dt = 0. Because the q-vector θ\φ now spans
a space of dimension q − s, the reduced vector ψ = V(θ\φ),
where q − s by q matrix V contains in its rows the first q − s
eigenvectors of the matrix

∫ [θ\φ(t)][θ\φ(t)]T dt, is more use-
ful. In other words, ψ is computed from θ\φ by principal com-
ponents analysis, and the basis functions in ψ are defined in
this way such that they are orthogonal to each other as well as
to θ .

Let L be a linear differential operator that defines the total
roughness

∫ [Lri(t)]2 dt of the ith random-effect function. The
small number of basis functions θ�(t) in θ(t) are chosen as the
basis functions satisfying Lθ�(t) = 0. For example, when the
linear differential operator is the second differentiator, that is,
Lθ�(t) = d2θ�(t)/dt2, the two basis functions in θ(t) are the
monomials θ1(t) = 1 and θ2(t) = t. Figure 1 shows in the top
panel the consequences of sweeping the monomials θ1(t) = 1
and θ2(t) = t from eight B-spline basis functions defined by
equally spaced knots. The bottom panel shows the six basis
functions ψ(t) resulting from the PCA compression.

The integrals in (8) can be approximated by using the in-
prod function provided in the “fda” package in R, and also
available in Matlab from website www.functionaldata.org. The
basis defined by Demmler and Reinsch (1975) and used by
Brumback and Rice (1998) is closely related, but differs in
terms of being defined by matrix operations applied to matri-
ces of basis values defined at data observation points ti, and
therefore is specific to the data design.

http://www.functionaldata.org
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Figure 1. The top panel shows the eight B-splines φ(t) defined by equally spaced knots over [0, 1] swept by functions θ1(t) = 1 and θ2(t) = t,
and the bottom panel shows these swept functions compressed to six basis functions ψ(t) by a functional principal components analysis.

3.2 LME Smoothing Using a Partitioned Basis

We now assume a partitioned basis φ(t) = (θ(t)T ,ψ(t)T)T

having components of dimension s and q − s, respectively.
The corresponding order q coefficient vector bi defining func-
tional random component ri(t) = bT

i φ(t) is partitioned into cor-
responding components bi = (bT

i0,bT
i1)

T , as is the design matrix
Zi = [Zi0,Zi1].

Let L be a linear differential operator, such as D2, that de-
fines the total roughness

∫ [Lri(t)]2 dt of the ith random-effect
function. We assume that Lθ(t) = 0 and define the order q
roughness penalty matrix as Rb = ∫

Lφ(t)LφT(t)dt, so that∫ [Lri(t)]2 dt = bT
i Rbbi = bT

i1Rψbi1, where the order q − s
roughness penalty matrix Rψ = ∫

Lψ(t)LψT(t)dt. Because we
assume that Lθ(t) = 0, only the lower right order q − s subma-
trix of Rb will be nonzero, which is Rψ . For example, suppose
φ(t) is a vector of 73 Fourier basis functions with the period 1.
When the linear differential operator L is the harmonic accel-
eration operator Lφ(t) = (2π)2dφ(t)/dt + d3φ(t)/dt3, the as-
sociated partition will be θ(t) = (1, sin(2π t), cos(2π t))T and
ψ(t) = (sin(2πkt), cos(2πkt), k = 2, . . . ,36)T .

We now define the inverse variance component matrix �−1

in Section 2 to be a block diagonal matrix

�−1 =
(

UTU 0s×(q−s)

0(q−s)×s exp(ηb)Rψ

)
. (9)

Now UTU represents the inverse intercurve variation in the low-
dimension space spanned by θ(t), while the scalar exp(ηb) cap-
tures only inverse scale variation in the complementary space

spanned by ψ(t). Using this definition, the low-level fitting nui-
sance criterion J in (3) remains unchanged.

It may also be desirable to control the smoothness of the
fixed-effect function μ by also applying a roughness penalty.
That is, we may elect to extend the midlevel criterion to

H(β|γ ) = ‖y − Xβ − Zb̂‖2 + exp(ηβ)βTRββ,

where Rβ is an order p roughness penalty matrix, possibly de-
fined in the same manner as Rb.

Smoothing parameters ηb and ηβ , along with triangular vari-
ance component U are all complexity controllers. However, we
now see that ηβ controls complexity at a higher or more global
level than do ηb and U. This suggests a fourth level in our para-
meter hierarchy, which is now bi(β, ηb(ηβ),U(ηβ))(y).

This fourth level is optional, and it may be considered ad-
equate to impose smoothness on the fixed-effect function by
keeping p, the dimension of β , small. Nevertheless, we consider
the possibility that p = q and, moreover, that p and q could ap-
proach, equal, or even exceed n, the number of observations per
curve.

However, we have observed an identifiability issue in this
case that interfered with stable numerical optimization and
caused other computation problems. It is possible that the fixed-
effect curve estimate μ̂ may bleed a certain amount of shape
variation off to the random effect estimates r̂i, and therefore be-
come seriously biased. To avoid this, we now extend the LME
framework to permit the constraint

∑
i r̂i(t) = 0 for all t, as well

as, in principle, other constraints.
Assuming the balanced design case where n, Xi and Zi do not

vary over i, let the q by N matrix B contain in its columns the
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random coefficient vectors bi. Let the M by N matrix W, where
M ≤ N, be a design matrix representing a linearly constrained
structure in B through the equation B = AW, where the q by
M matrix A now contains unrestricted coefficient vectors. We
specifically have in mind the constraint W1N = 0 where the
N-vector 1N contains only one’s. This ensures that

∑
i bij = 0

for all j, and therefore that the functional random effects ri(t)
defined with the coefficient vectors bi sum to 0 for any t.

Define the Mq by Nq super-matrix W̃ = (Iq ⊗ W). Writing
Mq-vector a = vec(A), we then have that b = W̃Ta. Finally, our
notation is made more compact by defining Nn by Mq super-
matrix Z̃ = (WT ⊗ Z) and order Nq super-matrix �̃−1 = (1N ⊗
σ 2

e �−1).
We can now reexpress the low-level criterion (3) as

J(a|β, ηb, ηβ,U) = ‖y − Xβ − Z̃a‖2 + aTW̃�̃−1W̃Ta.

Its minimizer is

â(β, ηb, ηβ,U) = [Z̃T Z̃T + W̃�̃−1W̃T ]−1Z̃T(y − Xβ).

Define the order nN random-effect smoothing operator Pb and
its complement Qb as

Pb = Z̃[Z̃T Z̃T + W̃�̃−1W̃T ]−1Z̃T and

Qb = InN − Pb,

respectively. We now have

min
a

{J(a|β, ηb, ηβ,U)} = ‖Qb(y − Xβ)‖2 + âTW̃�̃−1W̃T â.

The midlevel criterion H(β) is now

H(β|ηb, ηβ,U) = ‖y − Xβ − Z̃̂a‖2 + exp(ηβ)βTRββ

= ‖Qb(y − Xβ)‖2 + exp(ηβ)βTRββ. (10)

Its minimizer is

β̂(ηb, ηβ,U) = [XTQ2
bX + exp(ηβ)Rβ ]−1XTQ2

by.

Letting order nN super-matrices

Pβ = QbX[XTQ2
bX + exp(ηβ)Rβ ]−1XTQb and

Qβ = InN − Pβ,

we can express the minimizer of (10) as

min
β

{H(β|ηb, ηβ,U)} = ‖QβQby‖2 + exp(ηβ)β̂
T

Rβ β̂.

If we define the order nN operator matrix P as

P(ηb, ηβ) = Pβ(ηβ) − Pβ(ηβ)Pb(ηb) + Pb(ηb) and

Q = InN − P,

then the fit to y is ŷ = Py. Then the third-level optimality crite-
rion (5) remains essentially unchanged as

GCVb(γ |ηβ) = nN
‖Q(γ |ηβ)y‖2

trace[Q(γ |ηβ)]2
, where

γ = [ηb,vec(U)T ]T .

If required, the fourth-level optimality criterion that is mini-
mized with respect to the fixed-effect smoothing parameter ηβ

is

GCVβ(ηβ) = nN
‖Q(ηβ, γ̂ (ηβ))y‖2

trace[Q(ηβ, γ̂ (ηβ))]2
. (11)

3.3 Parameter Cascading and Marginalization

Many statistical models have some parameters not of direct
interest, which are called nuisance parameters, for example, the
random-effect parameters b in the LME model. Some parame-
ters, holding the primary interest, are called structural para-
meters, for example the fixed-effect parameters β in the LME
model. The usual approach to the estimation of structural para-
meters β in the presence of nuisance parameters b is to elimi-
nate them by marginalization with respect to a measure π(b).
That is, given a joint likelihood LJ(β,b|y), we optimize the
marginal likelihood

LM(β) =
∫

C
LJ(β,b|y)π(b)db. (12)

There is a close formal connection between the marginaliza-
tion strategy and parameter cascading that is captured by the
following theorem. This theorem holds for any statistical model
with the nuisance parameters b and structural parameters β , not
limited to just the LME models.

Theorem 3.1. Assume that the joint likelihood LJ is contin-
uous with respect to b ∈ C for all β ∈ T , T is compact and C is
closed. Then there exists at least one function b̂(β) and a fitting
criterion H(β, b̂(β)|y) such that

arg max
β

H(β, b̂(β)|y) = arg max
β

LM(β|y).

Proof. By the integral version of the multivariate mean value
theorem, there exists for any β ∈ T at least one value b∗(β)

such that

LM(β) =
∫

C
LJ(β,b|y)π(b)db = LJ(β,b∗|y)

∫
C

π(b)db.

Although multiple solutions to this equation may exist for some
values β , we can always construct a function such that b̂(β) =
b∗ over T . The specification of such a function does not have
any impact on the identification H(β, b̂(β)|y) = LJ(β,b∗|y),
and the theorem follows.

Moreover, H also arises from an application of a regulariza-
tion process. Because LM as defined in (12) is constructed from
LJ by a linear operation, it can be reexpressed as a solution of a
functional quadratic optimization problem, namely,

LM = arg max
f

∫
C
[LJ(·,b|y) − f ]2 exp(lnπ(b) + C)db,

where f is a real-valued function on T and C is an arbitrary
constant. That is, LM is a smoothed likelihood where localized
variation in b has been removed.

In this sense, then, the principal contrast between parame-
ter cascading and marginalization is in terms of the computa-
tional overhead implied by integration in (12), and parameter
cascading can be viewed as a strategy for bypassing computa-
tionally intensive integration strategies such as Markov chain
Monte Carlo.
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4. LME SMOOTHING FOR
VANCOUVER TEMPERATURES

Figure 2 displays the daily temperatures in Vancouver on
every fifth day for 34 years over the period 1961–1994 (N =
34 and n = 73). For our parameter cascading analyses, both
the fixed effect μ(t) and the random effects ri(t) were ex-
panded using 73 Fourier basis functions. These were partitioned
into φ(t) = (θ(t)T ,ψ(t)T)T , where the kernel basis functions
in θ(t) are θ1(t) = 1, θ2(t) = sin(ωt), θ3(t) = cos(ωt), and the
complement basis functions in ψ are ψ2k−3(t) = sin(ωkt) and
ψ2k−2(t) = cos(ωkt), k = 2, . . . ,36, and ω = 2π/365. Since the
fixed and random effects are periodic functions, the roughness
penalty for both fixed and random effects is defined by the har-
monic acceleration operator Lx(t) = ω2 dx(t)/dt + d3x(t)/dt3.

The R version of the LME-REML method was also used,
and for this analysis the fixed effect μ(t) was expanded using
73 Fourier basis functions, but the random effects ri(t) were de-
fined in two ways in order to vary the complexity of the model.
Option (1) expanded ri(t) using the three kernel basis func-
tions in θ(t) and with  unconstrained except for being pos-
itive definite. Option (2) expanded ri(t) with 73 Fourier basis
functions, but with the covariance matrix being block-diagonal:
the order 3 covariance of the kernel function coefficients was
unconstrained-positive-defiinite, and the covariance matrix for
the coefficients of the remaining 70 basis functions in ψ(t) was
a positive multiple of the identity matrix.

The parameter cascading method estimated η̂β = −1.85,
which corresponding to the smoothing parameter value
exp(η̂β) = 0.16 for the functional fixed effect μ(t). The esti-
mated fixed effect μ(t) is shown in Figure 3 as a solid line, and
is quite smooth. The standard error estimate was σ̂e = 2.6 de-
grees Celsius, a value quite consistent with known day-to-day
temperature variation.

The smoothing parameter estimate for the random effects
ri(t) was exp(η̂b) = 0.01, implying that a substantial amount of
random-effect variation was captured by the high-frequency ba-
sis functions in ψ(t). Figure 4 displays in both the kernel basis

Figure 2. The temperature in degrees Celsius at Vancouver
recorded every fifth day for the years 1961 to 1994.

Figure 3. The solid line is the parameter cascading estimate for the
fixed effect μ(t). The dashed line is the LME-REML fixed-effect esti-
mate that is common to Models (1) and (2).

random effects expanded with θ(t), and the complement basis
functions with ψ(t). We see that there are important effects with
periods of half a year possessing considerable phase variation,
and that a few calendar years have unusually large variation in
the complement space.

The LME-REML method does not permit independent con-
trol of the smoothness of the fixed effect, and the estimate for
both of its random-effect models turned out to be that shown as
the rather rough dashed line in Figure 3. The standard error es-
timates for the two models were 2.6 and 0.93 degrees for Mod-
els (1) and (2), respectively. The LME-REML random-effect
estimates for the low-dimensional random effect Model (1) re-
sembled the PC kernel effects shown in Figure 4, but since this
model had no capacity to represent higher-frequency effects, it
tended to over-smooth or under-fit the data. The LME-REML
random-effect estimates for Model (2) came close to interpo-
lating the differences between the data and the fixed effect, and
therefore strongly under-smoothed or over-fit the data, which is
reflected by the unrealistically small value of σ̂e.

Figure 4. The left panel displays the random effects expanded with
the kernel basis functions in θ(t). The right panel displays the random
effects expanded with the complement basis functions in ψ(t).
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Figure 5. The estimated random effects ri(t) for year 1985.

Figure 5 shows the estimated random effects ri(t) for the year
1985. Parameter cascading yields an estimate that reflects vari-
ation in both the low-frequency and higher-frequency domains,
as one might expect. The fitted curve using LME-REML for
Model (1) is the closest to the estimated fixed effect in most
of the time interval because it underestimates the random ef-
fect, an seems too smooth. The fitted curve using LME-REML
for Model (2) has large variation because of under-smoothing.
Nevertheless, all three random effects suggest that Vancouver’s
December in 1985 was unusually cold.

5. SIMULATIONS FOR LME SMOOTHING

Simulation was used to compare parameter cascading with
LME-REML in estimating the LME smoothing model (7). The
true functional fixed effect μ(t) and random effects ri(t) are
fixed to be the parameter cascading estimates from the real
Vancouver temperature data analyzed in Section 4. We gen-
erated 100 simulated datasets by adding the measurement er-
ror εi ∼ Normal(0n×1, σ

2
e In×n). We set the number of curves

N = 34, the number of equally spaced observations n = 73 in
the time interval [1, 365], and σe = 2.6, which are all consistent
with the Vancouver temperature example. The basis functions
used for the parameter cascading method are the same as those
used in the Vancouver temperature example. The LME-REML
method was used to estimate Models (1) and (2) described in
Section 4.

Table 3 shows the the bias, STD and RMSE, averaged over
73 time points, for the fixed effect and random-effect estimates.
For the fixed-effect estimates, the parameter cascading method
reduces the average bias, STD, RMSE by 75%, 94%, and 91%,

Table 3. Simulation results for 100 simulated samples using
parameter cascading and LME-REML for Models (1) and (2)

Fixed effect Random effects

|BIAS| STD RMSE |BIAS| STD RMSE

PC 0.032 0.026 0.042 0.105 0.092 0.143
lme() for Model (1) 0.128 0.443 0.467 0.373 0.298 0.479
lme() for Model (2) 0.128 0.443 0.467 0.208 2.194 2.204

NOTE: The middle three columns are the absolute value of the bias, standard deviation
(STD), and root mean squared error (RMSE), averaged over 73 time points, for the fixed-
effect estimates. The right three columns are the absolute value of the bias, STD, RMSE,
averaged over 73 time points and 34 random effects, for the random-effect estimates.

respectively, when compared with REML. For the random-
effect estimates, Model (1) has a smaller RMSE than Model (2),
but has a slightly larger bias than Model (2). This makes sense
because Model (2) has a larger number of basis functions used
for expanding the random effects. On the other hand, parame-
ter cascading estimation of random effects reduces the average
bias, STD and RMSE by 72%, 69%, and 70%, respectively,
when compared with the LME-REML estimates for Model (1),
or by 50%, 96%, and 94%, respectively, when compared with
the LME-REML estimates for Model (2).

The parameter cascading method also gives good estimation
for LME smoothing models in a simulation study with differ-
ent scales of measurement errors. These results are discussed in
Section 2 of the supplementary file.

6. CONCLUSIONS AND DISCUSSION

Our primary objective was to show that parameter cascad-
ing is an acceptable alternative to marginalization as a method
for dealing with high-dimensional nuisance parameters. The
desiderata that we had in mind were: (1) the quality of esti-
mates of parameter values and their sampling variances; (2) the
ease of mathematical development and programming; (3) com-
putational overhead; and (4) the stability of the algorithms
involved. We chose the linear mixed-effects model because
marginalization-based methods are already widely used and
well developed, and because the model itself is widely applied.

Our simulation results indicate that, in this context, parame-
ter cascading is as good as the main current methods in terms of
bias and sampling variance for estimation of fixed effects. Table
1 indicates that parameter cascading estimates, along with those
produced by function lme(), had rather better standard errors
than the closed form UNC-MLE and UNC-REML estimates
available for balanced designs, and also avoided the frequent
occurrence of negative eigenvalues in estimated covariance ma-
trices. Sampling variance estimates produced by parameter cas-
cading showed negligible bias in Table 2, and were as good as
or better than those produced by the other three methods. In
the random design simulation results, which are included in the
supplementary file, we saw that parameter cascade estimates of
fixed effects and variance components were of good to excellent
quality over a wide range of error variances.

Computational overhead for parameter cascading can be a
serious issue for the four-level cascades that we considered in
the smoothing situation, since matrices of the order of nN must
be multiplied, but when these computations are programmed in
Matlab and other languages capable of using multiple proces-
sors, computation times for single analyses of the size of the
Vancouver weather data (nN = 2482) are a matter of a few
minutes. The three-level computations described in this paper
required fractions of a second.

Along the way we also applied LME to smoothing prob-
lems, and developed some new methodology that permits esti-
mation of low-dimensional variance components in the context
of both fixed and random effects of rather higher dimensionality
than one encounters in usual variance components, random ef-
fects, and longitudinal data analyses. These results should prove
useful for multicurve smoothing problems where the signal-to-
noise ratio is so low that borrowing strength across records of-
fers substantial improvements in both fixed effect and variance
component estimation.
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In practice, the noise variance �i in (1) may have unknown
elements, parameterized with a small number of coefficients,
such as in an AR(1) model. These coefficients can be estimated
along with the parameter vector γ in the top-level optimization.
We will work on this problem in our further research, as well as
applying parameter cascading to nonlinear mixed-effect models
where marginalization results cannot not be expressed in closed
form.

Multilevel parameter structures abound in contemporary data
analysis, and are on the sharp increase as more and more com-
plex data structures require our attention. The results in this pa-
per encourage us to consider parameter cascading as an effec-
tive strategy in contexts much more nonlinear and complicated
than this LME context.

SUPPLEMENTAL MATERIALS

Brief Description: Section 1 gives two simulation studies for
estimating the LME variance component model. One simu-
lation study is summarized in Section 2 for estimating the
LME smoothing model. Section 3 shows one application of
parameter cascading method in estimating a LME smoothing
model. (Supplement.pdf)
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