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Abstract

The use of autoregressive moving average (ARMA) models to assess the control loop performance for processes that are adequately
described by the superposition of a linear dynamic model and linear stochastic or deterministic disturbance model is well known. In this
paper, classes of non-linear dynamic/stochastic systems for which a similar result can be obtained are established for single-input single-
output discrete system. For these systems, lower mean-square error bounds on performance, can be estimated from the closed-loop rou-
tine operating data by using non-linear autoregressive moving average with exogenous inputs (NARMAX) models. It is necessary to
know the process time delay. The fitting of these models is greatly facilitated by using efficient algorithms, such as Orthogonal Least
Squares or other fast orthogonal search algorithms. These models can also be used to assess the predictive importance of non-linearities

over multiple-time horizons.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

There has been considerable research and industrial
application in performance monitoring and assessment in
the last decade. While research has focused on monitoring
and assessment for univariate and multivariate systems,
most industrial applications, and especially those using
commercial packages, use a univariate approach [1]. These
methods assume that the closed-loop system can be
described by a linear difference equation, driven by either
stochastic or deterministic disturbances. This type of
description arises when the process is adequately described
by the superposition of a linear(ized) transfer function
model plus additive stochastic or deterministic distur-
bances. When a linear controller is used, the closed-loop
is described by a linear transfer function.
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Far less has been written on extending the methodolo-
gies for performance assessment to non-linear systems.
There are several challenges:

(1) Complexity of non-linear behavior.
Non-linear processes can exhibit six general types of
behavior [2,3]:
(a) Harmonics arising from periodic inputs.
(b) Subharmonics arising from periodic inputs.
(c) Chaotic response to simple inputs.
(d) Input-dependent stability.
(e) Asymmetric response to symmetric inputs.
(f) Steady-state input and output multiplicities.

(2) Non-equivalent representations.
It is a standard result [4], that any time-invariant lin-
ear system can be completely characterized by its
impulse response, or equivalently by an autoregres-
sive model. Unfortunately, this equivalence cannot
be extended to all non-linear problems [5].

(3) Disturbance representation.
For any process, disturbances can enter at any point.
For linear systems, these disturbances can always be
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represented as an additive output disturbance. Since
superposition does not exist in non-linear systems,
this representation is not universal. This presents
challenges both in modelling and in the determina-
tion of the minimum variance performance bound.
(4) Challenges in model determination and parameter
estimation.
For systems that admit a linear representation, there
are well-established methods for obtaining models of
the closed-loop system. These methods can be auto-
mated. For non-linear systems there are enormously
rich classes of models to be entertained, and the
resulting models often have many parameters that
must be estimated.

In this paper, some preliminary results are presented for
determining the minimum variance performance bound for
a class of non-linear systems. The basis for minimum var-
iance performance bounds was developed in [6]. There it
was shown that the minimum variance performance bound
for a linear system could be estimated from routine closed-
loop data by fitting a time series to the outputs and then
determining the variance of the b-step ahead predictor,
where b is the process delay. The underlying theory relies
on the development of minimum variance controllers, out-
lined in [7,8], and the existence of a feedback invariant [6].
The feedback invariant is a dynamic component of the
closed-loop system that is not affected by feedback. In
the case of linear systems, the feedback invariant can be
easily recovered from a time series description of the
closed-loop system. The feedback invariant is then used
to estimate the variance of the output that would be
achieved if a minimum variance controller were to be
implemented.

The development of non-linear minimum variance con-
trollers has been reported in [9] for processes that admit a
non-linear ARMAX representation. As will be shown in
this paper, the minimum-variance-feedback invariant does
not exist for the general process described in [9]. The design
of a minimum variance controller for a class of non-linear
system described by the superposition of a non-linear
dynamic model and a linear, output stochastic disturbance
model has been described in [10,11]. Grimble [11] notes that
the use of an output representation for a disturbance model
is very much motivated by pragmatic reasons.

In this paper, it is shown that a minimum-variance-feed-
back invariant exists for an important class of non-linear
processes that can be described by the superposition of a
non-linear dynamic model and additive linear or partially
non-linear disturbance. In these instances, the minimum
variance performance can be estimated from routine oper-
ating data. It may be necessary to fit a time series model to
the closed-loop data using both inputs and outputs. In
many cases, the parameters of the closed-loop system can
be estimated using linear regression techniques. Included
in this class of processes are those whose process dynamics
can be described by an autoregressive Volterra series [2].

Such models are capable of representing processes that
exhibit harmonics, asymmetric behavior — including asym-
metric dead zones that are typically encountered with valve
stiction, and input multiplicities.

The outline of this paper is as follows: In Section 2, a
general non-linear input-output model is introduced. In
Section 3, a review of linear minimum variance control-
lers and the estimation of performance lower bounds
from routine operating data is provided. This is followed
by the development of non-linear minimum variance con-
trollers and a development that shows the existence of a
feedback invariant for this system. In Section 5, a more
detailed description of the Volterra representation and
one general method are outlined for estimating the mini-
mum variance performance bounds. This is followed by a
simulation example to demonstrate the essential features
of the method. The paper is concluded with a description
of outstanding issues and limitations of the proposed
methodology.

2. Process description

The class of models considered in this paper are those
that can be modelled using an input/output representation.
State models are excluded. For discrete models, the general
form of the description is:

z = iz, u; ) (1)

where z, is the deterministic output of the system in re-
sponse to the inputs that are denoted by u,. b represents
the number of whole periods of delay in the system and
is the number of sampling intervals that elapse between
making a change in the process input and first observing
its effect. The notation fi(z; ,,u’ ;) denotes a function of
previous values of z,_;, i = 1..n., denoted by z;_, and u,__j,
j=0..n,, denoted by u; ,. Common representations for dis-
crete systems arise when fi(z_;,u; ,) is expanded in finite
polynomials involving summations of terms z,_;, z,_z,_
e Uppjy Uy Uy ey M pj... [12,139]. The
resulting expansions produce non-linear difference equa-
tions. Hammerstein and Weiner systems are encompassed
in this framework [5,9,14].

In this paper we are interested in systems that are also
affected by disturbances. The most elementary representa-
tion is:

v=z+a = filzu ) +a (2)

where y, is the measured output and ¢, is a white noise ele-
ment, sometimes also known as the innovation sequence.
As noted by Sales and Billings [9], this representation can-
not be estimated from input/output data since the z’s are
not observed. Instead, the authors note that the appropri-
ate input/output representation is:

Vi = fZ(yr—h “;b) +a (3)
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Eq. (3) provides a restricted description for an additive dis-
turbance as it does not allow for a general disturbance that
might include moving average terms or cross-products be-
tween the stochastic driving force and the inputs and out-
puts. The most general form is [9,13]:

Vi :f3(yz*717u:—b’a;1)+al (4)

In linear systems, the effect of process disturbances can al-
ways be correctly represented as an output disturbance
regardless of where they actually appear in the system. This
is a consequence of the principle of superposition. In non-
linear systems, superposition does not hold. It is useful
however to provide an additive description, which is of
the form:

Wi :fP(y;gflvuzth)"'Dl (5)

where D, is the additive distance which can be represented
by a non-linear ARMA model as D, = fp(D; |,a;_,) + a,.

3. Minimum variance performance bounds and feedback
invariants for linear systems

3.1. Minimum variance performance bounds

In linear systems, the following representation is often
used

-1
)
Y= M”tfb + D, (6)

o(g™")

where w(¢~") and §(¢~") are polynomials in the backshift
operator ¢!, defined such that ¢~ 'y, =y, ,. The distur-
bance D, is modelled as the output of a linear filter driven
by white noise. This type of disturbance is conveniently
represented by an autoregressive-integrated-moving-aver-
age (ARIMA) time series model of order (n4,d,ny) of the
form:

0g)
blg )V

where V= (1 — ¢ ') is the difference operator and d is a
non-negative integer. Typically d < 2. Positive values of d
allow for drifting and other forms of non-stationary behav-
ior. O(¢~") and ¢(¢~") are monic and stable polynomials.

The design of controllers to minimize the variance of the
process output can be traced to [7,8]. To derive the mini-
mum variance controller, Egs. (6) and (7) are substituted
into Eq. (5) to obtain:

= (g (7)

=

-1 -1
(g (g ~
Yigp = M“t + Dy = (—ur + Disvy + iy

og™") og™")
= 5’t+b/r + eyt (8)

lA),+b/, and 3., are the b-step ahead minimum-mean-
square-error forecast for the disturbance and y,., respec-
tively and e,/ 1s the prediction error. These terms are
constructed by the methods described in [7,8]. The predic-

tion error, e, 1S a moving average process of order

b—1.
e =1+0 g+ + 0,167 " Nay 9)

The ¢ weights are the first 5 — 1 impulse coefficients of the
disturbance transfer function in Eq. (7). With these devel-
opments, if it is possible to choose the control action such
that

-1
—w(q ) U+ Dy =0 (10)

d(q7")
then the process output equals the prediction error. The

process output under this control scheme will be denoted

by yMY.

y%}: = €rb/t (11)

The prediction error, e,1/, does not depend on the manip-
ulated variable over the prediction interval k = 1..5. The
lower bound on performance, as measured in the mean
square sense, is:

oy =var{yiy} = (1+¢i -+ ¢; ) (12)

(g™
og1)
exceeds that of the lower bound.

Conditional expectation interpretations. The develop-
ment of the minimum variance controller and controller
bound can be cast in terms of conditional expectations.
The process in Eq. (8) has been written as:

If it is not possible to invert then the output variance

Virs = Vesbjt T €rsnyr (13)

where 3,4 1s the prediction of y,i, and is uncorrelated
with the prediction error e,4,/,. When the {a,} are iid Nor-
mal variables, then .4 = E{y,.,|[;}. E{y.s/I,} denotes
the conditional mean of y,;, using all of the information
available up to an including time z. It is well known that
the conditional mean has the lowest prediction error vari-
ance among all predictors that use the same information
set [7,15,16]. In this case, the minimum variance controller
can be seen as a strategy to choose the current control ac-
tion to set the conditional mean to zero, thus minimizing
the variance of y,1,. When the driving force is white noise,
then the prediction error has the smallest variance among
all linear predictors [7,16]. In the latter case, the difficulties
in constructing the conditional mean arise from the chal-
lenge in constructing the joint distribution of all of random
variables and then determining the conditional mean from
the joint distribution. Consequently, the formulae used in
this section for the prediction and prediction error are most
often used.

3.2. Feedback invariants

If the process is controlled by a linear feedback control-
ler, the transfer function between the measured output and
the driving force for the disturbance is of the form
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where y, =y, — y,. It was shown in [6] that the closed loop
can be written as:

- algh) (14)

o _alg) (g ")
Yivb = —ﬁ(qfl) Qv = €ryp)r + Blg 1) a
-1
= €ryp)r + %j’t (15)

The term e/, appears in the closed-loop. It is not influ-
enced by feedback and hence is termed a feedback invari-
ant. Consequently, this term can be estimated from
routine operating data in one of two ways.

(1) Estimation of closed-loop impulse response [6]. In
this approach a time series model of the form given
in Eq. (14) is fit to closed-loop data. The first b — 1
impulse coefficients of “(q::> are estimates of the first
b — 1 coefficients of the open-loop disturbance trans-
fer function. Using the estimated coefficients and an
estimate of o2 obtained from the model-estimation
stage, the minimum variance performance can be esti-
mated [6].

(2) Direct estimation [17]. In this approach a lagged
regression of the form:

Virb = €y + é(q_l)j/t (16)

is estimated from routine closed-loop operating data.
The residual variance from the model fitting provides
an estimate of the minimum variance performance.

It may be necessary to include a constant in the regres-
sion equation to account for the fact that the average value
of y, may differ from the setpoint, ys,. With either method,
a number of performance indices can be defined. The meth-
odology has been extended to account for regulation and
setpoint tracking, feedforward variables, cascade systems,
user-defined benchmarks, extended-horizon performance
indices and multivariate systems. A comprehensive analysis
of performance assessment methods and an extensive liter-
ature review is given in [1].

4. Extension to non-linear systems
4.1. Non-linear minimum variance control

The development of non-linear minimum variance con-
trollers has been considered by a number of authors [9-11].
The latter two authors have considered systems that are the
superposition of a non-linear process model plus a linear
stochastic model of the form:

Vo= Sty W) + Dy (17)

In this equation w; denotes auxiliary variables that are
known. The functional form of the plant model is quite
general and can represent both linear and non-linear sys-

tems. The fundamental difference between fp.(u ,,w!)
and fp(y;_;,u;_,) is that the latter model allows for non-lin-
ear dynamic terms that are functions of previous values of
the process output. As noted by Grimble [11], fp. (1 ,, w))
does not need to be structured. It may be represented by
non-linear difference equations, fuzzy neural networks
(see also [10]), the output of a computer code or a simple
look-up table (some restrictions will be noted in a subse-
quent section).

The derivation of the minimum variance controller for a
process described by Eq. (17) is straightforward [11]. Eq.
(17) can be written as:

Yeep = Jps (”j’ W;b) + Dy
= fre(u;, wiyy) + Bt+b/t + e/ (18)

If it is possible to find the control action at time # such that
Sr (U, wi) + lA)H;,/, = 0, then the resulting controller is the
minimum variance controller. Alll of the equations in the
previous section apply with “b’((;],l)) being replaced every-
where by fp.(u;,w;,). In this derivation ¢ 'fp.(u]_,,
w) = feo (Ul W)

It may not be possible to implement a minimum vari-
ance controller due to the fact that: (i) the minimum vari-
ance controller often gives high gain, wide bandwidth
and unrealistically large control signal variations, and (ii)
the controller is physically forbidden to take on certain val-
ues which are needed to achieve the minimum variance per-
formance. In both of these cases, the variance of the output
must exceed that for when it is possible to implement the
minimum variance controller. However, a3y, Eq. (12), pro-
vides a theoretical lower bound on the output variance and
can be used as a useful guide for controller assessment.

Pragmatic reasons are used to justify the linear represen-
tation for the disturbance [11]: (i) the disturbance model is
a linear, time invariant approximation to the disturbances,
(ii) it may not be possible to obtain a more sophisticated
model given the quality of the data, and (iii) the resulting
controllers appear to perform well when this approxima-
tion has been used. In addition to these guidelines, a num-
ber of theoretical considerations can be used to justify this
choice of disturbance representation. These are discussed
more fully in the following section.

Minimum variance design for the case where the process
plus disturbance model has the more general form des-
cribed in Eq. (3) has been considered in [9]. (These authors
consider a self-tuning or adaptive form of the controller.)
The methodology requires construction of the b-step ahead
prediction and then finding the control action to set this
to a specified value. Although conceptually similar to the
method outlined in [10,11] additional complication arise
due to the more general disturbance model.

4.2. Minimum variance performance bounds

The utility of the minimum variance performance esti-
mate is that this lower bound on performance can be esti-
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mated readily from a representative sample of closed-loop
data when it is felt that the process is adequately described
by a linear transfer function with additive stochastic distur-
bance. In these instances, calculation of the bound requires
that existence of a feedback invariant and a methodology
to provide for its estimation from routine operating data.
In this section, the results in [6] are extended to a class of
non-linear systems. In order for a feedback invariant to
exist it is necessary that the b-step ahead prediction error
be independent of the manipulated variable action. As a
first step, it is necessary to determine the class of systems
for which this is true.

Theorem 1. The b-step ahead prediction error, b = 1, is
independent of the manipulated variable if the process plus
disturbance admits a representation of the form:

8(g "y = f i pul,) + Dy (19)

where D, denotes a time series model of the form:

m

¢(q—l)vd5t =a+ Zm: Oia,_; + Z i: 0;a,-:a,;
=l Jj=i

i=1

et Y Oa @, (20)
i=1

Ue=1—1
and {a,} is an white noise sequence with mean u, and vari-
ance a>. d(qg ") and (g~ ") are monic and stable polynomials
in the backshift operator. The disturbance model must be
invertible [ 18]. Stability and invertibility of non-linear poly-
nomial ARMA models are discussed in [ 18,19].

Proof. See Appendix A [

Corollary 1-1. The system described in Eq. (19) admits a
description of the form:

Virw = Verbje T €riji (21)
where

e =6 (g0 87)) + Dy (22)
and

8(¢”")D, =D, (23)

The prediction error is given by:

Crib/t = Vivh — j’t+b/r =Dy — Bt+h/t (24)
These follow immediately from Theorem 1 (Appendix). D, can
be interpreted as the additive disturbance and D, as the
output disturbance. (Note: It is not true that 5(q‘1)5t+b/t =

D t+b/1- )
Remarks

(1) By construction E{e,,/,} = 0 (Appendix)

(2) In the non-linear case e,/ in Eq. (24) is a very com-
plex function. It will include terms of a,yyp, ... a1
and may include terms a, , k > 0. The latter terms

are not considered random variables when the condi-
tional expectation is taken with respect to the infor-
mation set I,.

(3) In the paper there is also a requirement that the

disturbance be modelled as a linear time series, or

non-linear time series with a specific structure. The

justification for this was considered by Grimble [11]

who noted that pragmatically this is a reasonable

assumption. This justification can be strengthened
with the following comments.

(a) The assumption of an additive term implies that
the interaction terms between the disturbance
terms and the dynamic terms are small in compar-
ison to the main effect terms. As will be seen, this
assumption can be tested empirically.

(b) The assumption that the disturbance be modelled
as the output of a linear or restricted complexity
non-linear time series models is in fact not partic-
ularly restrictive. One of the most famous results
in time series is a theorem due to Herman Wold,
which states that a covariance stationary time ser-
ies can always be represented as an infinite mov-
ing average process driven by white noise [16].
This theorem provides the foundations for the
use of linear autoregressive moving average
(ARMA) models. The Wold decomposition theo-
rem applies even when the time series admits a
non-linear representation since a non-linear time
series always has a linear representation that will
enable the second-order properties — autocorrela-
tions — to be correctly modelled. Of course, it may
be possible to produce smaller prediction errors
using a non-linear time series. The consequence
for this paper, is that if we use a linear time series
for the disturbance, then the forecasts and fore-
cast errors resulting from this representation will
have the smallest forecast error, in the mean
square error sense, among all linear forecasting
methods. If we use a non-linear method for fore-
casts, then it may be possible to construct a lower
prediction error.

(4) A sufficient condition for Theorem 1 is that the pro-

cess description does not contain non-linear terms in
Vitp—in k=1...(b — 1), 1.e. for any time periods over
the delay horizon. Past dependencies on linear
terms in y,4,_x, kK = 1 are permitted. Theorem 1
may not hold if the non-linear function f{*) in
Eq. (19) includes non-linear terms in y, p4;, i=
1...(b—1). This can be illustrated by the following
simple example. Let

=y o ta, 0<¢<l (25)

If the distribution of {a,} is such that ¢, = 0 and the
input is restricted to positive values, then y, > 0 V¢.
With an obvious recursion:
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Vi1 = Gy + agy

Vigr = PVl + G (26)
= o(Pyuts1 + a1 + arpa

The corresponding conditional mean and prediction

error are:

j’t+1/t = ¢y 1+ 1y,

j}t+2/t = E{yl+2|[,} =

€1 = el — Hy

= py + Pula .y — p,)

Py, uer + w)us + p, 27)
€2 = Ary2

where pu, is the mean of the driving force. The two-
step ahead prediction error depends on the current
control action. If y,_; is changed to y,_, in Eq. (25),
then

j’t+1/t = ¢yt71ut—1 + u,
j}t+2/t = ¢ytuz + U,

€1 = Al — My

(28)

€2 = A2 — Hy

where p, is the mean of the driving force. The two-
step ahead prediction error is independent on the cur-
rent control action.

The dynamics in this example are members of the
class of bilinear models [5]. Within this class dynam-
ical models, superdiagonal and diagonal representa-
tions satisfy the conditions of Theorem 1.

Corol]ary 1-2. For a linear ARIMA disturbance model
_ 0™

e : Hve

are given by:

a,, the prediction error and conditional mean

Par (29)

where the ¢ weights are the impulse coefficients of the

0g~") SR ,
STV transfer function and:
Py(g™")

Plg V!
Py(g™")
Plg V!
Py(g™)
0(g~")
Py(q~ ") is a polynomial in the backshift operator obtained by

solving the Diophantine equation:

0(q")
(g )VIo(qg")

e =1+@ g+ +, g

:_f(,)/:7”j)+

t

5(‘]71))%%/:

:f(,yrau;) + (yt_j}t/t—l)

=i u) + D, (30)

=l+¢q"'++@,_g""

g "Py(q")
d(qg)V?o(q")

These equations follow immediately from the definition of the

+ (31)

conditional expectation and standard results for prediction of

linear time series [7,8].

Theorem 2. If the process in Eq. (19) is controlled by a linear
or non-linear feedback controller g(-), then the prediction
error e,y 1S feedback invariant and can theoretically be
recovered from routine operating data.

Proof. The proof follows readily by noting that with a
feedback controller g(+), the process between measured out-
put and the disturbance is of the non-linear ARMA form:

71)f(yfag(y? — V) + Bt+b/t + e
U (32)

-1
Vs =0 (q
= 5’t+b/r + et

Corollary 2-1. For a linear ARIMA disturbance D, =

djq(?—;;éda,, the closed loop admits the following representations:
Innovations or 1-step ahead representation
Vet = Vert)e + Qo (33)
where
IETOA ) \ Pi(g™")
g Ve = 180y = Yp)) + Bl
=f0 180 p1 — ysp))
Pi(g")
+ 34
¢( ,1)Vd 0, — yf/f 1) (34)

This equation is of the form:

- ysp)) + C(q71 )yt
(35)

where A(qg~")=0(¢""), Blg "= d(g WV and Clg™") =
Pi(g .

5(51 )yl+h/l _f(ytag(yt

A(qil)j’zﬂ/z = B(qil)f(ﬁ—bﬂ,g(y;_bﬂ

Py(q")

W = Viji— 1)

(36)

Vo)) +

b-step ahead representation

This equation is of the non-linear autoregressive (NLAR)
Sform:

A(G Vs =B (@ )08 —ye)) +C(a )y, (37)

where B'(g")= B(g )1+ @ig " + -+ @p_1g ™) and
Cq )= Pyq .

Since e/, 1s feedback invariant the minimum variance
performance bounds can be estimated from routine oper-
ating data if it is possible to construct y, /. There are
significant challenges in doing this. The task is further
complicated by noting that the y,,,/, includes both exact
values of output and deviation values. In linear systems,
superposition applies, and it is easy to construct the
predictor as the sum of disturbance and setpoint effects
[20]. In the general non-linear case, the resulting model and
model-building strategy may be quite difficult. Nonethe-
less, if the non-linear predictor can be approximated by a
general function such as a universal polynomial approxi-
mation, it is possible and practicable that the minimum
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lower bounds can be estimated from the routine operating
data. In the following section, the detailed procedures
using Volterra series to estimate the minimum lower
bounds are discussed.

5. Estimation of lower bound from operating data using
Volterra series approximation

5.1. Volterra series approximation

A simpler case in which the non-linear function only
includes the inputs is conmsidered, i.e., f(y; ,u  ,)=
S (). Volterra series are a very important class of func-
tions which satisfy this condition. They are recognized as
a powerful tool in the study of non-linear systems with
memory and they have been used in a variety of situations
both in applications and in the study of approximation of
general non-linear systems [2,5,21-25].

Volterra series have theoretical justification as approxi-
mators with the following desirable properties:

(1) They can be used to model non-linear processes that
have the following qualitative behavior [2,3]: (i) gen-
erate harmonics from periodic inputs, (ii) exhibit asy-
metric response to symmetric inputs, and (iii) possess
input multiplicities.

(2) Many block-oriented non-linearities, such as Ham-
merstein (a static non-linearity, followed by a linear
dynamic model), Weiner models (a linear dynamic
model followed by a static non-linearity), Uryson
models (Hammerstein models in parallel), and projec-
tion-pursuit models (Weiner models in parallel) have
Volterra series representations. Recently, Voros [26]
has shown how Hammerstein systems can be modi-
fied to include systems with asymmetric dead-zones.
These are very common non-linearities associated
with valve-stiction and hystersis.

(3) Parallel and cascade Volterra models result in Vol-
terra models.

(4) Processes described by control-affine models, i.e.
admit a Volterra representation. Non-linear control
affine-models have been studied extensively in the
control and chemical engineering literature, i.e. [27].

(5) Bilinear systems can be approximated with a struc-
tured Volterra representation [28]. However the full
range of bilinear behavior cannot be modelled. A
bilinear model exhibits input dependent stability,
whereas a Volterra series does not show this behavior
and a bilinear model, unlike a Volterra model, cannot
have an input multiplicity [2,3].

Volterra series are being studied for applications in model
reduction [29] and model-predictive control as they pro-
vided a relatively simple extension of linear systems to
incorporate non-linearities. The design of a minimum var-
iance controller for an industrial paper process using a
Hammerstein model was examined in [30]. A number of

investigations into using Volterra models for model predic-
tive control have been reported: a polymerization system
was considered in [21], a mineral processing systems [31],
a simple heat exchanger systems [32], a ph process and high
purity distillation [33,34]. In all cases, fundamental models
were used to simulate the process and Volterra series mod-
els were used to build an approximate model that was used
for (simulated) control purposes. Ref. [35] contains an
extensive bibliography on recent results in non-linear iden-
tification for control purposes.

Consider the case when the process can be approxi-
mated as a finite discrete-time Volterra series with time
delay b. The non-linear system in Eq. (19) can be written
as:

5(‘171)% = hm’(”;) + Bt

B (1) = ho + Z hu,_; + Z Em: Bty o)
4 Z Z B iyt

ik =lk—1

Let yg, denote output setpoint and define the deviation sig-
nal y; =y, — y,. If it were possible to approximate the pro-
cess plus controller with a finite Volterra series in the
deviation variable y, then:

(g ")) = hw(g.()) = 6(a™ vy + D
- hO + thy: i + Z Zhuyt ,y: J
i=b j=i

'j’r—ik + 5[ (39)

+Z Z iy :kyr it

=1

In the case of a linear disturbance model, the innovations
representation, Eq. (33) and the b-step ahead representa-
tion, Eq. (36) have the following structure:

Innovations or 1-step ahead representation

A(q )yt+1/t = h +Zh,yt i+ Z Zh,,J’t Viej
i=0

-1 j=i
4+ -4 Z cee Z hﬁl.,.ikj’t—il o 'j’t—ik (40)

i=b—1 Q=g

where ¥, /i = Yer1/t — V- In this equation, the non-linear
effects are confined to time intervals 1 — k, k = b — 1 and
the linear effects start at + — 1. In deriving this equation
the nomenclature has been to use generic terms for the or-
ders and parameters.

b-step ahead prediction

Polynomial autoregressive (PAR) representation

m m

A(G " Ve =y + Zh,y, YOS ey
i=0 i=0 j=i
+Z Z BT ey (41)

=ij—1
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In this representation, it is assumed that the process plus
controller can be adequately modelled by a finite-order
Volterra series.

Polynomial autoregressive with exogenous
(PARX) representation

A B =K+ S W+ 3 3
i=0

=0 j=i

inputs

RS ZO o Z hﬁllml-,ﬁt—n il + C/(qfl)j/,
i= p

ig=if_1

(42)

In this representation, it is only necessary to assume that
the process can be represented by a finite-order Volterra
series. In both of the b-step ahead representations, the
overlapping effects of the linear and non-linear effects start
at the same time period.

While both representations can be used to estimate the
variance of the b-step ahead prediction error, the direct
b-step ahead representation provides a computationally
attractive method. The estimate of the minimum-variance
performance is the residual variance after fitting the model.
This approach is the appropriate non-linear generalization
of the method outlined in [17].

5.2. Polynomial AR model identification using orthogonal
least squares methods

Direct methods to estimate the minimum lower bounds
are used in this paper using the PAR model in Eq. (41) or
PARX model in (42). Several methods have been proposed
for this purpose: Orthogonal Least Squares (OLS) methods
[36] and Fast Orthogonal Search (FOS) methods [37,38].
Use of Artificial Neural Network (ANN) models to
approximate the NARMAX models is discussed in
[39,40]. In this paper, the OLS methods are used to deter-
mine the order and estimate the parameters of the PAR/
PARX models which represent the b-step ahead prediction.
When A(g~ ') =1, the linear-in-parameters model in Egs.
(41) and (42) can be written matrix form as:

Y=FO+E (43)
with
j}n 1 jjnfl j/nfm .. -j/nfm
Y = , F=|:
j}N 1 j}Nfl j}me --j}me
e,
e . O =T[h I Bon] (44)
en

F is the matrix of regression variables, @ is the parameter
vector and Z is the vector of b-step ahead prediction errors.
N, n and M are the data length, starting point for the
regression and number of regressor variables respectively

(n> M). The parameter vector that minimizes
Y — FO|* (|| - || is the Euclidean norm) is given by:
O = (FTF)"'F'Y (45)

The number of possible terms in Eq. (44) could be very
large. If the number of regressors is n, and the maximum
polynomial degree is n, the number of parameters is:
(n, +ny)!

o = (46)
For example, if n, =8 and n,;=4, then n, =495. A sub-
stantial reduction in the number of model parameters can
be achieved by an appropriate selection of the orthonormal
functions. The OLS algorithm is applicable when there are
a 'reasonable’ number of regressors. In the case of the lar-
ger model orders and higher polynomial degrees, the Fast
Orthogonal Search (FOS) [38] and Genetic Programming
(GP) [41] methods are recommended. Variations on least
squares algorithms have also been developed for computa-
tional efficiency when there are a large numbers of candi-
date regressors, such as Volterra series, radial basis
functions, neural networks or a polynomial NARX models
[35].

The OLS algorithm developed by Chen et al. [36]
involves a Q-R decomposition of the regression matrix F
of the form F= WA, where Wis an M x M upper triangu-
lar matrix and 4 is an (N — n + 1 X M) matrix with orthog-
onal columns in the sense that WTW =D is a diagonal
matrix. (N — n+ 1 is the length of Y vector and M is the
number of regressors.) After this decomposition one can
calculate the OLS auxiliary parameter vector g as:

g=D"'w'y (47)

where g; is the corresponding element of the OLS solution
vector. The sums of squares of the observed values, Y'Y
can be written as:

T

ay)
)

M
Y'Y = ngw?w,- + (48)
i1

~
—
(=)

—

vAvhere~ isAthe residual error from the full model, i.e.
E =Y — FO®. An error reduction ratio, [err]; of F; term
can be defined as:
50T
ferr], = & (49)
YTY
This ratio offers a simple mean of order and select the mod-
el terms of a linear in parameters model according to their
contribution to the performance of the model. The terms
which have very small error reduction values, say smaller
than p, are eliminated. The value of p determines how
many terms will be included in the final model. This OLS
algorithm can be interpreted as a forward-selection method
where the reduction in sums of squares is maximized at
each decision stage.
Alternatively, one can combine the OLS approach with
a technique that provides a penalty for increasing model
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complexity. One such method is Akaike’s Information Cri-
terion AIC(s) [36]:

AIC(A) =NInéZ +M -/ (50)

where M is the number of the model parameters, and 6% is
the residual error. / is a positive value chosen to provide a
penalty for model complexity. Using statistical arguments,
a value of 4 =4 is recommended [36,42].

It has been assumed that A(¢~') = 1. This is not restric-
tive. The effect of ignoring this term is to increase the num-
ber of terms in the Volterra series. When some roots of
A(g~") are close to the unit circle, the OLS approach
may provide an inefficient form for approximation, requir-
ing a large number of terms for the predictor in Egs. (40)
and (41). The more comprehensive model polynomial
ARMA/X models can be employed to efficiently fit the
closed-loop non-linear system in Egs. (38) and (39) effi-
ciently. The detailed iteration procedures can be found in
[36].

For the invariant bounds to exist, it is necessary that the
prediction error not depend on the manipulated variable.
This assumption can be tested by regressing the prediction
errors & = Y — FOY" on values of the manipulated vari-
able, and analyzing the regression results for statistical
significance.

6. Simulation results

In this section, an example is provided to demonstrate
the methodology outlined in this paper. Consider a non-
linear dynamic system which can be represented by a sec-
ond order Volterra series as:

Y, =02u,354+03u,_4+u_s+ 0.8ut{3 + 0.8u;,_31,_4
— 0.714[2_4 — O.Suf_5 —0.5u, 3u, s+ D, (51)

The disturbance is an ARIMA(2,0,0) process:
~ a[

D,=D, =
T T 1 —1.6¢g71 4 0.8¢72

(52)

a, 1s a white noise sequence with zero mean and variance
0.1. The true value of the minimum variance lower bound
is 0.6656. A proportional (P) controller and a proportional-
integral (PI) controller are used to control the simulated
process:

ue = =020y, — yy)

0.3—-0.2g"! (53)
U = —1_761,1 =)
Fig. 1 shows a realization of D,, y, and u, for the case when
the PI controller was used. The open loop step response to
a change in the manipulated variable of 40.5 is shown in
Fig. 2a and the closed-loop response with the PI controller
to step changes of 0.5 in setpoint zero is shown in Fig. 2b.
The closed-loop response with the PI controller to a +0.2
impulse disturbance is shown in Fig. 3. We notice that

. ‘ ‘ ‘ ‘
0 200 400 600 800 1000
2
ST 0f ‘
> ‘ ‘ ‘ ‘
0 200 400 600 800 1000
5
> 0
s ‘ ‘ ‘
0 200 400 600 800 1000
Time

Fig. 1. The stochastic realizations of D,, u, and y, with the PI controller.

although the open-loop process is clearly non-linear, the
non-linearity in the closed-loop process has been reduced.

For estimating the minimum variance lower bounds,
three direct estimation methods are used:

e Linear autoregressive (LAR) model: f/,+b/, =3 ViV
For a linear model, it is also convenient to fit the data
using an ARMA representation. Calculation of the var-
iance of the b-step ahead forecast error is straightfor-
ward once the model parameters have been identified [6].

e PAR model (linear and quadratic terms only) (see Eq.
(41)).

e PARX model (linear and quadratic terms only) (see Eq.
(42)).

Five hundred observations were used to fit the parameters
for these models. The minimum variance bound was calcu-
lated as the residual variance from each model. This proce-
dure was repeated five hundred times with a different white-
noise sequence. For the case when the PI controller was
used, the estimates of the means of inputs and outputs
are 3.15E—5 and 2.93E—4 respectively, and the estimates
of the variance of inputs and outputs are 0.4233 and
3.2061.

When formulating the model, a large number of candi-
date terms are initially allowed, Table 1. In these examples,
the AIC criterion was used in conjunction with OLS. For
the PI controller case, the average number of the terms
selected to fit the models are 14.5, 32.9 and 24.6 respective
for the LAR, PAR and PARX models. For the P controller
case the number of terms are 4.2, 10.8 and 5.6 for the LAR,
PAR and PARX models respectively.

The estimates of the o3, using three models for the P
and PI controller cases are shown in Table 2. The compar-
ative box plots of the quality estimates are shown in Fig. 4.
From the data in Table 2 and with reference to Fig. 4, the
following observations can be made:
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Fig. 2. Open loop and closed-loop responses (PI controller).
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Fig. 3. Closed-loop simulation for a disturbance impulse change +0.2
with the PI controller.

(1) When using linear AR models, the bias in the esti-
mate of the minimum variance lower bounds in P
controller case is much smaller than PI controller

(2)

case. The reason is that the quadratic contributions
are less important using the P controller than the PI
controller. While it is possible that the inclusion of
more autoregressive terms might provide a ‘better’
estimate 03, when using the linear models, the AIC
criterion is used to provide a practical means of
avoiding overfitting the data.

An ARMA(p,p — 1) model was fit to the data with
increasing values of p. The model order, p, was chosen
to minimize the AIC criterion. The variance of the b-
step ahead forecast error was obtained from this
model using standard techniques. The results were
essentially indistinguishable from those obtained
using the method described in the previous paragraph.
There is a slight bias of the estimate of the perfor-
mance bound for the PI controller case using PAR
models. With the PI controller, the b-step prediction
should include the infinite linear and quadratic auto-
regressive terms for our example. However, in our
implementation, only finite terms were used.

Table 2
Table 1 Estimates of 63, using different models
Initial candidate terms for models PI controller P controller
Linear (y) Quadratic Linear (u) Total Gy s.d. 6y s.d.
LAR 40 0 0 40 LAR 1.4487 0.4079 0.6826 0.0511
PAR 20 55 0 75 PAR 0.6964 0.1070 0.6697 0.0459
PARX 20 55 20 95 PARX 0.6704 0.0888 0.6683 0.0460
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Fig. 4. Comparative box plots of the quality estimates from three models.

(3) The estimates using PARX models are better than
PAR models specially for PI controller case since
the PARX models are closer to the true prediction
functions in finite linear and quadratic inputs form.

7. Discussion and conclusions

A class of non-linear dynamic/stochastic systems for
which there exist minimum variance feedback invariant
performance bounds has been established. For this class
of systems, the minimum variance bound can be estimated
using closed-loop data using a non-linecar PAR or PARX
model to estimate the b-step ahead prediction of the pro-
cess. It is necessary to know the process delay. Application
of the methodology to a simulation example indicates that
this approach gives very credible estimates of the minimum
variance performance bound. The simulation results indi-
cate that the orthogonal-search method is effective. The
theoretical developments also indicate that there are many
challenges compared to the linear case. Specifically, issues
related to structure verification and the inclusion of vari-
able set-points in the analysis require attention.

How and where to use these results? The methodology
can be used to quantify the effect that non-linearities in
the closed loop have on the predictable component of the
process. If the differences between the linear and non-linear
performance bounds are important, then further investiga-
tion into the source of the non-linearities might be justified,
or the use of a non-linear controller might be considered.
In the case of linear systems, extended horizon perfor-

mance indices have proven to be valuable [17] for two rea-
sons: (i) the deadtime many not be exactly known and the
extended horizon performance indices provide some guid-
ance as to the sensitivity of the method to deadtime, and
(i) many model-based controllers, such as model predictive
control used a prediction horizon as one of the tuning
parameters. For these types of control algorithms, the
extended-horizon performance bounds provide a perfor-
mance evaluation method that is more closely aligned with
the tuning objectives. In econometrics, it has been observed
that non-linear models that provide good predictions over
one time horizon, can provide poor predictions over
extended horizons [43]. Further development of the meth-
ods outlined in the current paper to extended-horizon pre-
dictions would provide an explicit indication of the
importance of non-linearities over extended time steps.
Since one is interested in the impact of non-linearities on
prediction effectiveness, it is not necessary that the dynam-
ics or stochastic model satisfy the requirements of Theorem
1. To address the issues outlined in [43], it might be neces-
sary to contemplate different model structures for each pre-
diction horizon.

Although not investigated in this paper, the use of
higher-order spectra [15,44,45] might prove valuable in
deciding whether non-linear modelling is justified. An
important assumption in this paper is that the distur-
bance appears as an additive, output-type disturbance.
The use of cross-correlation techniques for testing for
linear and non-linear minimum variance control [7,9]
would appear to provide a constructive test for validating
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this assumption. There are many challenges in more
broadly applying this method, including extension to set-
point tracking and feedforward systems.
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Appendix A

Proof of Theorem 1. The expression for y,;;, is written
down by inspection from Eq. (19). When d(¢~") and ¢(¢ ")
are stable, 7;, j > 0 form a convergent series. It can be
readily shown that by substituting for all values of y,,_;,
i=1.b-1)

] =
Ve =0 (q )0 up) + ZT/ Solag,,- 1—1 + arib-)
J=0

(A1)

where 7;is the jth impulse coefficient of [0(g ") ¢p(g Hv!
In the more general case which admits the possibility that
5(¢~") is not stable or d > 1, the {7;} do not form a conver-
gent series. In the general case:

Yivp = 571(q’1)f(yt*,uf)
b—1
+ Z 4 (/p(arp1-;) + o) + Ky (Dy, a7) (A2)
=0

where K,(D,,a’) is a remainder term that is obtained by
successive substitutions. (This representation is also valid
for the case where {7;} form a convergent series.) The out-
put disturbance has been represented as:

b1
Dy = Z Tj(,fD(a;:rb—l—j) + ap—j) + Kp(Dy, a;)

Jj=0

(A.3)

First, consider the 1-step conditional prediction of the dis-
turbance D,4 given the information set /,.

Bt+l/t = i, + K1 (D, af) (A4)

Since 79 =1 and E{K:(D,,a")|l,} = Ki(D;,a;). This latter
expression results from the definition of the conditional
expectation. The b-step ahead forecast is:

b—1
Dt+b/t:E{Z j(fD(a:+h1j)+at+b/)|[t}+E{Kb( nay)l}

0
—1

%‘\.

:E{ Ti(fo(arp1-;) +az+b.f)|[t} +Ky(Dy,a;)
=0

(A.5)

Now in the above equation E{a; |1} = poy k=1..h and
E{a,,k|1t} =a;, =D,y — thk/tfkfl s k= 0. The Optlmal
predictor is not given by the term K, (D;, a}), as those terms
that arise from the summation in Eq. (A.5) must be in-
cluded. It is now necessary to evaluate terms of the form
E{fp(a; )} ,k=1.b—1. Each of these terms requires

evaluation of the integral:

E{fD(a;:rk)Vt} = / T / fD(aj+k)p(at+k7 s 7at+])dat+k eedagy
—00 —0Q

(A.6)

where p(d;44,,,a:+1) 18 the joint distribution of @,y - - - @;41.
Combining these results with Eq. (A.1):

UG5 ) + Disaye (A7)

j’z+h/t = 5_1 (q

and

Crtb/t = Virp — Vitb/t
b—1
X
7( D(at+b—1—j)
j=0

- E{fD(a;—b—l—j)Ut} +agp;— )

(A.8)

The prediction error is feedback invariant thus proving the
theorem. We also notice from Eq. (A.8) that E{e;4,,} =0.

Toillustrate the methodology, consider an ARIMA(O0, 1,2)
disturbance.

(1 +hg™" + hag™?)
1—g!

For this example 7, =1, >

the future can be written as:

D, =

a; (A9)

0. The disturbance 2-steps into

1
D, = Z at+2—/ +mag-; + hZat—J) +D,

=
= Q2 + hag + a + a + ha, + ha, oy + D,
(A.10)

Using the definition of the condition expectation, and
assuming that {a,} are a zero mean white noise sequence:

5t+2/r = ha, + ha, + hya,_y + D,

= (hl —|—h2)a, —|—h2a,,1 +D, (All)
The prediction error is
eria)e = Qryr + Magy + ay = ao + (14 hy)ag, (A.12)

Equivalent expressions are obtained using the Diophantine
equation approach.
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