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Abstract 

Simplified models (SMs) with a reduced set of parameters are used in many practical 

situations, especially when the available data for parameter estimation are limited.  A variety 

of candidate models are often considered during the model formulation, simplification and 

parameter estimation processes.  We propose a new criterion to help modellers select the 

best SM, so that predictions with lowest expected mean-squared-error can be obtained.  The 

effectiveness of the proposed criterion for selecting simplified nonlinear univariate and 

multivariate models is demonstrated using Monte Carlo simulations and is compared with the 

effectiveness of the Bayesian Information Criterion (𝐵𝐼𝐶). 
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1. Introduction 

A mathematical model is a representation, in mathematical terms, of certain aspects of a 

nonmathematical system (Aris, 1999).  In science and engineering, mathematical modelling 

plays an important role, and models are used for simulating, designing, controlling and 

optimizing industrial production processes.  In many modelling situations in chemical 
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engineering, modellers have sufficient scientific knowledge to derive complex 

phenomenological models, which can be expected to match the underlying behaviour of the 

process very well.  Unfortunately, it is often too difficult or costly to obtain enough good data 

to reliably estimate all of the unknown model parameters (e.g., Perregaard, 1993; Bagajewicz 

and Cabrera, 2003; Yoshida et al., 2003; Lv et al., 2004; Maria, 2004, 2006; Mchaweh et al., 

2004; Chang et al., 2005; Romdhane and Tizaoui, 2005; Wang et al., 2007).  For complex 

models with many parameters, the resulting parameter estimates and model predictions may 

exhibit high variability, especially when the data available are limited (e.g., the number of data 

points is small, measurements are noisy, the range of input-variable settings is small, and/or 

experimental designs are highly correlated) (Wu et al., 2007). The decisions made using 

these models (or their parameter estimates) may be unreliable.  As a result, it is important to 

avoid estimating too many model parameters using limited data.     

Because of the difficulties associated with formulating complex models and with obtaining 

good estimates for all of the unknown parameters, engineers often use simplified models 

(SMs) that are known to be structurally imperfect.  A variety of candidate SMs can be 

obtained by making different assumptions during the model formulation and simplification 

process.  There are many reasons to choose a SM with fewer parameters and terms than the 

truly-structured or extended model (EM) (Zhang, 1997).  The practical advantages of a 

parsimonious model often overshadow concerns over the correctness of the model structure.  

When the available data are not informative, SMs can be expected to give better predictions 

with lower mean-squared-error than the EM (Rao, 1971; Hocking 1976; Wu et al., 2007).   

When experimental data are insufficient to support the use of complex models, modellers 

must make decisions about model simplification. They need to know which terms and 

parameters to include, which parameters to fix at nominal values, and which terms to leave 
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out, so that they can obtain the best possible predictions using the data that they possess 

along with their scientific and engineering knowledge.  Many different strategies have been 

developed for selecting appropriate SMs.   

Model-Selection Criteria (MSC) have been studied and used for model selection since the 

Akaike Information Criterion (𝐴𝐼𝐶) was proposed in 1973 (e.g., Akaike (1973), Linhart and 

Zucchini (1986), McQuarrie and Tsai (1998), Rao and Wu (2001), Burnham and Anderson 

(2002), Konishi and Kitagawa (2008)).  When using a MSC, such as the 𝐴𝐼𝐶 , the Final 

Prediction Error Criterion (𝐹𝑃𝐸), or Mallow‟s 𝐶𝑝 , the criterion value for different candidate 

models is calculated directly from the model equations and the residuals that are obtained 

during parameter estimation.  The candidate model with the lowest criterion value is selected 

as the best model.  MSC are simple to use because no numerical optimization is required 

beyond the parameter estimation step.  In the first article in this series (Wu et al., 2009), we 

compared nine commonly-used MSC for their performance and tendencies when selecting 

SMs when the number of data points is small and experimental designs are correlated.  We 

showed that the expected mean-squared-error provides a convenient theoretical means for 

analyzing the relative tendencies of these different MSC. 

In this article, we develop a new MSC aimed at selecting the SM with the lowest expected 

mean-squared-error (MSE) for model predictions made at the design points.  This new MSC 

explicitly accounts for bias due to imperfect model structure and for variance in model 

parameters and predictions arising from noisy data. 

It is well known that removing parameters from a truly-structured EM will introduce bias, but 

may decrease variance in model predictions (Rao, 1971; Hocking 1976).  Use of the MSE for 

selecting appropriate SMs has been studied by Linhart and Zucchini (1986) and Wu et al. 

(2007).  Linhart and Zucchini (1986) proposed a hypothesis-test approach to compare two 



4 
 

nested models and to select the one with lower mean-squared-prediction-error.  Wu et al. 

(2007) summarized the many quantitative and qualitative results in the literature concerned 

with using and selecting SMs.  A confidence-interval approach was then developed to assess 

the uncertainty associated with whether a SM or the EM will provide lower-MSE model 

predictions at the design points used for parameter estimation.  It was shown that, when SMs 

are preferable due to limited data, decisions concerning whether the EM or SM will give better 

predictions are very uncertain. 

One short-coming of the approaches proposed by Linhart and Zucchini (1986) and Wu et al. 

(2007) is that they can only be used for comparing two nested models, where the SM is a 

simplified version of the more complex EM.  However, in many practical situations, modellers 

often consider a set of candidate SMs, which may or may not be nested with each other.  In 

the current article, a model-selection criterion is proposed for selecting the best model (with 

the lowest expected MSE for predictions) from a group of candidate models that includes the 

EM and several SMs.  This criterion is developed using univariate linear models, and is then 

extended for selection of univariate nonlinear models.  The performance of the proposed 

model selection criterion is demonstrated using Monte Carlo simulations and is compared 

with the performance of the Bayesian Information Criterion (𝐵𝐼𝐶).  It is also shown that the 

proposed criterion is effective for selecting multivariate nonlinear models when the noise 

variance-covariance matrix is known.  Difficulties associated with selecting simplified 

multivariate models when the noise variance-covariance matrix is unknown are discussed. 

 

2.  Development of MSE-Based Model-Selection Criterion 

Consider a truly-structured EM that can be described by the following univariate linear 

model 
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𝑌 = 𝑋𝛽 + 𝜀 

= 𝑋1𝛽1 + 𝑋2𝛽2 + 𝜀 
(1)  

where 𝑌 ∈ ℝ𝑛 , 𝑋 ∈ ℝ𝑛×𝑝 , 𝛽 ∈ ℝ𝑝 , 𝜀 ∈ ℝ𝑛 , 𝑋1 ∈ ℝ𝑛×𝑝1, 𝛽1 ∈ ℝ𝑝1 , 𝑋2 ∈ ℝ𝑛× 𝑝−𝑝1  and 𝛽2 ∈ ℝ𝑝−𝑝1 .  

In this model, the noise 𝜀 is additive, and the noise-free response of the process is 𝑌𝑡𝑟𝑢𝑒 = 𝑋𝛽.  

Also, assume that (Beck and Arnold, 1977): 1) input settings 𝑋1 and 𝑋2 are deterministic with 

full column rank; and 2) the stochastic component 𝜀  is mean-zero and uncorrelated with 

constant variance 𝜎2.  A particular simplified version of the EM is of the form 

 𝑌 = 𝑋1𝛽1 + 𝑒 (2)  

where 𝑒 = 𝑋2𝛽2 + 𝜀  incorporates the stochastic component combined with any model 

mismatch.  The SM is nested within the EM. 

In the current article, we are interested in selecting the best simplified model (SM) from a 

set of candidate models to obtain the lowest total mean-squared-error (MSE) for model 

predictions.  The MSE is defined as the expected squared difference between the model 

prediction, 𝑌 , and the noise-free response of the process, 𝑌𝑡𝑟𝑢𝑒  (Rice, 1995).  For a column 

vector of predictions 𝑌  obtained using a candidate model, the total MSE is:  

 

𝑀𝑆𝐸 𝑌  = 𝐸   𝑌 − 𝑌𝑡𝑟𝑢𝑒  
𝑇
 𝑌 − 𝑌𝑡𝑟𝑢𝑒    

=  𝐸 𝑌  − 𝑌𝑡𝑟𝑢𝑒  
𝑇
 𝐸 𝑌  − 𝑌𝑡𝑟𝑢𝑒  + 𝑡𝑟  𝐶𝑜𝑣 𝑌    

(3)  

where 𝐸 ∙ , 𝐶𝑜𝑣 ∙ , and 𝑡𝑟 ∙  denote the expected value, variance-covariance matrix and 

trace, respectively.  The second line in Eqn. (3) shows that MSE is equal to the squared bias 

( 𝐸 𝑌  − 𝑌𝑡𝑟𝑢𝑒  
𝑇
 𝐸 𝑌  − 𝑌𝑡𝑟𝑢𝑒  ) plus the total variance (𝑡𝑟  𝐶𝑜𝑣 𝑌   ) of the model predictions 

(Rice, 1995).  As a result, MSE, which accounts for both bias and variance, is an appropriate 

criterion for analyzing simplified or misspecified models.   

When unknown parameters in the EM (Eqn. (1)) and SM (Eqn. (2)) are estimated using 
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ordinary least-squares (OLS), the expected total MSE for predictions is (Beck and Arnold, 

1977) 

 

𝑀𝑆𝐸𝐸 = 𝜎2𝑝 

𝑀𝑆𝐸𝑆 = 𝜎2𝑝1 + 𝛽2
𝑇𝑋2

𝑇 𝐼𝑛 − 𝑃1 𝑋2𝛽2 
(4)  

where the subscripts “E” and “S” indicate the use of the EM and the SM, respectively. 

In our previous work (Wu et al., 2007), we developed a strategy to determine whether the 

SM or the EM is expected to give predictions with lower MSE (at the design points used for 

parameter estimation).  This strategy relies on a critical ratio 𝑅𝐶, which is defined as 

 𝑅𝐶 =
𝛽2
𝑇𝑋2

𝑇 𝐼𝑛 − 𝑃1 𝑋2𝛽2

 𝑝 − 𝑝1 𝜎2
 (5)  

where 𝑃1 = 𝑋1 𝑋1
𝑇𝑋1 

−1𝑋1
𝑇.  The numerator of 𝑅𝐶 is the squared bias introduced by removing 

parameters associated with 𝑋2 from the model, and the denominator is the variance reduction 

(due to fewer parameters being estimated) when a particular SM is used rather than the EM.  

As a result,  

 𝑅𝐶 < 1 (6)  

is a necessary and sufficient condition for 𝑀𝑆𝐸𝑆 < 𝑀𝑆𝐸𝐸 , which implies that the SM is 

preferable to the EM for making predictions.  This critical ratio has also been used to compare 

the tendencies of various MSC that are commonly used for selecting SMs (Wu et al., 2009). 

The value of 𝑅𝐶 depends on unknown 𝛽2 and 𝜎2.  Fitting the EM using OLS provides 𝛽 2 

and 𝑠𝐸
2, which are unbiased estimators of 𝛽2 and 𝜎2.  Therefore, an estimator of 𝑅𝐶  can be 

obtained as 

 𝑅 𝐶 =
𝛽 2
𝑇𝑋2

𝑇 𝐼𝑛 − 𝑃1 𝑋2𝛽 2
 𝑝 − 𝑝1 𝑠𝐸

2 =
 𝑆𝑆𝐸𝑆 − 𝑆𝑆𝐸𝐸  𝑝 − 𝑝1  

𝑆𝑆𝐸𝐸  𝑛 − 𝑝  
 (7)  

where “𝑆𝑆𝐸” denotes the sum of squared residuals.  Note that the calculation of 𝑅 𝐶 requires 

knowledge (or an assumption) about the form of the truly-structured EM.  Given the additional 
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assumption that   is normally distributed, 𝑅 𝐶 in Eqn. (7) is a likelihood ratio statistic (Wang 

and Chow, 1994), which follows a noncentral 𝐹 distribution (Montgomery et al., 2001) with 

 𝑝 − 𝑝1  and  𝑛 − 𝑝  degrees of freedom, and noncentrality parameter:  

 𝜆 =  𝑝 − 𝑝1 𝑅𝐶 (8)  

𝑅 𝐶 given in Eqn. (7) is also the statistic of a partial 𝐹 test for testing the hypothesis 𝐻0: 𝛽2 = 0 

(Montgomery et al., 2001). 

In situations where 𝜎2 is known from prior information about the variability of the response 

variable, an estimator for 𝑅𝐶 can be obtained from: 

 𝑅 𝐶 =
𝛽 2
𝑇𝑋2

𝑇 𝐼𝑛 − 𝑃1 𝑋2𝛽 2
 𝑝 − 𝑝1 𝜎2

=
 𝑆𝑆𝐸𝑆 − 𝑆𝑆𝐸𝐸  𝑝 − 𝑝1  

𝜎2
 (9)  

where  𝑝 − 𝑝1 𝑅 𝐶 follows a noncentral 𝜒2 distribution (Montgomery et al., 2001) with  𝑝 − 𝑝1  

degrees of freedom and the noncentrality parameter 𝜆  from Eqn. (8). 

From Eqns. (4) and (5), the reduction in total MSE at the design points, when a particular 

SM is used, is: 

 ∆𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑆 −𝑀𝑆𝐸𝐸 = 𝜎2 𝑝 − 𝑝1  𝑅𝐶 − 1  (10)  

The model with the smallest value of ∆𝑀𝑆𝐸 will provide the best predictions, on average, at 

the design points.  Due to the  𝑝 − 𝑝1  term in Eqn. (10), when two SMs contain different 

numbers of parameters (i.e. different values of 𝑝1), the SM with the lower value of  𝑅𝐶 may not 

correspond to the lower 𝑀𝑆𝐸𝑆.  As a result, we propose to use the following corrected critical 

ratio 𝑅𝐶𝐶 for comparing several models with different number of parameters: 

 𝑅𝐶𝐶 =
 𝑀𝑆𝐸𝑆 −𝑀𝑆𝐸𝐸 𝑛 

𝜎2
=
𝑝 − 𝑝1

𝑛
 𝑅𝐶 − 1  (11)  

𝑅𝐶𝐶  is the increase in 𝑀𝑆𝐸  (per data point) arising from the selection of a candidate SM 

(rather than the EM) normalized by the noise variance.  The true value of 𝑅𝐶𝐶 corresponding 

to the EM is zero, and the model with the lowest value of 𝑅𝐶𝐶 gives the best predictions at the 
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design points.  When the available data are informative enough to support the use of the EM, 

𝑅𝐶 for all SMs will tend to be larger than 1, and the corresponding 𝑅𝐶𝐶 will be positive.  In 

situations when the available data are limited, 𝑅𝐶𝐶  for some SMs will tend to be negative, 

indicating that these SMs will give better predictions than the EM.  The SM with lowest value 

of 𝑅𝐶𝐶 will give the best predictions in terms of MSE. 

Based on the relationship between 𝑅𝐶  and 𝑅𝐶𝐶  in Eqn. (11), estimates for 𝑅𝐶𝐶  can be 

obtained using 𝑅 𝐶 .  Unfortunately, 𝑅 𝐶  given in Eqn. (7) or (9) is biased and has a large 

variance (Kubokawa et al., 1993).  Improved point estimates for 𝑅𝐶 can be obtained using 

various estimators for the noncentrality parameter 𝜆 (Pandey and Rahman, 1971; Kubokawa 

et al., 1993).  A brief summary is provided in the Appendix.   

When 𝜎2 is unknown, we propose that the following truncated estimator for 𝑅𝐶 should be 

used:  

 𝑅 𝐶𝐾 = 𝑚𝑎𝑥  
𝑛 − 𝑝 − 2

𝑛 − 𝑝
𝑅 𝐶 − 1,

2 𝑛 − 𝑝 − 2 

 𝑝 − 𝑝1 + 2  𝑛 − 𝑝 
𝑅 𝐶  (12)  

where the subscript 𝐾 indicates that this estimator was derived using the improved estimator 

for 𝜆 developed by Kubokawa et al. (1993).  Note that 𝑅 𝐶, from Eqn. (7), follows a noncentral 

𝐹 distribution.  In situations when 𝜎2 is known, the appropriate truncated estimator is: 

 𝑅 𝐶𝐾 = 𝑚𝑎𝑥  𝑅 𝐶 − 1,
2

𝑝 − 𝑝1 + 2
𝑅 𝐶  (13)  

where 𝑅 𝐶 is obtained from Eqn. (9) and  𝑝 − 𝑝1 𝑅 𝐶 follows a noncentral 𝜒2 distribution. 

The truncated estimators in Eqns. (12) and (13) have lower MSE than the original 

estimators in Eqns. (7) and (9), and are less computationally demanding than a 

corresponding maximum likelihood estimator based on the method of Pandey and Rahman 

(1971).  As a result, we propose that modellers should select the best model using: 
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 𝑅 𝐶𝐶 =
𝑝 − 𝑝1

𝑛
 𝑅 𝐶𝐾 − 1  (14)  

The candidate model (either an SM or the EM) with the lowest value of 𝑅 𝐶𝐶 is expected to 

give the lowest total mean-squared-prediction-error at the design points.  We will now extend 

this new model-selection criterion for selection of univariate and multivariate nonlinear models, 

which are of greater interest to chemical engineers than are univariate linear models. 

 

3. Extension to Selection of Univariate Nonlinear Models 

In the nonlinear case, the EM has the form 

 𝑦 = 𝑓 𝑋,𝜃 + 𝜀 (15)  

where 𝑓 𝑋,𝜃  is nonlinear in some or all of the parameters 𝜃, and 𝜀 is independently and 

identically distributed with zero mean and constant variance 𝜎2 .  Unlike the linear case, 

numerical optimization is required to obtain the parameter estimates 𝜃  (Seber and Wild, 2003).  

When there are too many unknown parameters and the available data are limited (e.g., data 

may be noisy, or may be obtained from poorly designed experiments), SMs, which contain 

only a subset of the unknown parameters, are often preferred, so that difficulties associated 

with poor numerical conditioning can be avoided.  These candidate SMs can be formulated, 

either by making different assumptions in the model formulation process, or by leaving some 

parameters fixed at their initial guesses.  Good initial guesses can be obtained based on the 

available data (Bates and Watts, 1988), the modellers‟ engineering knowledge and 

experience, or from similar studies in the literature.   

Using a SM with a small set of parameters can significantly reduce the complexity and 

nonlinearity of the model, as well as the variability of model predictions.  However, use of the 

SM will introduce bias in model predictions.  For the nonlinear model described by Eqn. (15), 

the MSE, which accounts for bias and variance, can be defined as (Rice, 1995)  
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𝑀𝑆𝐸 𝑦  = 𝐸   𝑦 − 𝑓 𝑋,𝜃  
𝑇
 𝑦 − 𝑓 𝑋,𝜃    

=  𝐸 𝑦  − 𝑓 𝑋,𝜃  
𝑇
 𝐸 𝑦  − 𝑓 𝑋,𝜃  + 𝑡𝑟 𝐶𝑜𝑣 𝑦    

(16)  

where 𝑦 = 𝑓 𝑋,𝜃  .  For nonlinear models, 𝑅𝐶𝐶 is defined as 

 𝑅𝐶𝐶 =
 𝑀𝑆𝐸𝑆 −𝑀𝑆𝐸𝐸 𝑛 

𝜎2
 (17)  

This expression can be compared to Eqn. (11) for linear models.  For a given set of candidate 

models, the one with lowest value of 𝑅𝐶𝐶 corresponds to the lowest mean-squared-prediction-

error, and therefore, should be selected as the best model.  For nonlinear univariate models, 

𝑅𝐶𝐶 can also be written as:  

 𝑅𝐶𝐶 =
𝑝 − 𝑝1

𝑛
 𝑅𝐶 − 1  (18)  

where 𝑅𝐶, based on linearization of the nonlinear model, is approximately the squared bias 

introduced by estimating only a subset of parameters, divided by the associated variance 

reduction.  Unfortunately, for nonlinear models, no exact explicit expression can be written for 

𝑅𝐶 .  When 𝜎2  is unknown, 𝑅𝐶  can be estimated from the data using the likelihood ratio 

statistic: 

 𝑅 𝐶 =
 𝑆𝑆𝐸𝑆 − 𝑆𝑆𝐸𝐸  𝑝 − 𝑝1  

𝑆𝑆𝐸𝐸  𝑛 − 𝑝  
 (19)  

which is the same as Eqn. (7) for univariate linear models.  When 𝜎2 is known, 𝑅𝐶 can be 

estimated using the right-hand side of Eqn. (9).  As a result, the associated truncated 

estimator 𝑅 𝐶𝐾, which is defined in Eqn. (12) or (13), can also be derived, so that 𝑅𝐶𝐶 can be 

estimated as: 

 𝑅 𝐶𝐶 =
𝑝 − 𝑝1

𝑛
 𝑅 𝐶𝐾 − 1  (20)  



11 
 

The candidate nonlinear model with the lowest value of 𝑅 𝐶𝐶 is expected to give predictions 

with the lowest total MSE.   

The proposed 𝑅 𝐶𝐶  criterion for selection of nonlinear univariate models relies on the 

assumption that 𝑅 𝐶 from Eqn. (19) follows a noncentral 𝐹 distribution.  Gallant (1987) showed 

that likelihood ratio statistics for nonlinear models, like the one on the right-hand-side of Eqn. 

(19), can be adequately described by a noncentral 𝐹  distributions with noncentrality 

parameter 𝜆 =  𝑝 − 𝑝1 𝑅𝐶 .  Calculation of 𝑅 𝐶  using Eqn. (19) requires 𝑆𝑆𝐸𝐸 , the sum of 

squared residuals from the EM.  In situations where it is impossible to estimate all of the 

unknown parameters in the EM due to problems of ill conditioning, the value of 𝑆𝑆𝐸𝐸 can be 

approximated using a SM with a sufficiently large number of parameters, so that estimation of 

additional parameters does not produce a noticeable improvement in the objective function for 

parameter estimation.   

In the next section, Monte Carlo simulations are performed using the Lubricant model of 

Witt (1974) described by Bates and Watts (1988) to demonstrate: 1) the validity of the 

approximate noncentral 𝐹 distribution for 𝑅 𝐶 in Eqn. (19); 2) the effectiveness of the proposed 

MSE-based criterion for selecting the best nonlinear univariate model; and 3) the effects of 

various factors (e.g., noise variance, number of data points, initial parameter guesses) on the 

selection of the best model. 

 

3.1 Example: Lubricant Model (Witt, 1974; Bates and Watts, 1988) 

The Lubricant model predicts the logarithm of the kinematic viscosity of a lubricant as a 

function of temperature (C) and pressure (atm/1000).  This relationship is described by the 

following empirical model: 

 𝑦 = 𝑓 𝑋,𝜃 + 𝜀 (21)  
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with 

 𝑓 𝑋,𝜃 =
𝜃1

𝜃2 + 𝑥1
+ 𝜃3𝑥2 + 𝜃4𝑥2

2 + 𝜃5𝑥2
3 +  𝜃6 + 𝜃7𝑥2

2 𝑥2𝑒𝑥𝑝  
−𝑥1

𝜃8 + 𝜃9𝑥2
2  (22)  

where 𝑥1  is temperature and 𝑥2  is pressure.  The additive noise 𝜀  is assumed to be 

independently and identically distributed following a Normal distribution with mean zero and 

constant variance 𝜎2 (Linssen, 1975).  There are 𝑝 = 9 unknown parameters in the EM (Eqn. 

(22)).  The original data set consists of 𝑛 = 53  data points obtained at four temperature 

settings (0℃, 25℃, 37.8℃ and 98.9℃) and a variety of pressure settings ranging from 1 atm to 

7469.35 atm (Bates and Watts, 1988).   

In the Monte Carlo simulations used for testing the performance of 𝑅 𝐶𝐶 , the true noise 

variance is set as 

 𝜎2 = 0.002 (23)  

which we estimated based on the original data set.  Note that, this true value of 𝜎2 is only 

used for generating the data in Monte Carlo simulations.  We assume that 𝜎2 is unknown 

when selecting the best model. 

The true parameter values 𝜃𝑡𝑟𝑢𝑒  and the initial parameter guesses 𝜃0  were set at the 

values given in Table 1.  These values of 𝜃𝑡𝑟𝑢𝑒  were obtained by rounding off parameter 

estimates from the EM using the original data.  The third row of Table 1 shows the difference 

between 𝜃𝑡𝑟𝑢𝑒  and 𝜃0 as a multiple of the standard error for the parameter estimates.  For 

example, the initial guess of -0.3 for 𝜃4
0 is 8.00 standard errors away from the true value of      

-0.2 used to generate the simulated data.   

(Table 1) 
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Set of Candidate Models 

To demonstrate the usefulness of the proposed MSE-based criterion, we focus on a set of 

arbitrarily chosen candidate models, which is shown in Table 2.  The check marks “√” indicate 

that the corresponding parameter is estimated in the candidate model.  Parameters without a 

check mark were held at their initial guesses (second row in Table 1) and were not estimated 

in the corresponding SMs. 

(Table 2) 

 

Assessing the Validity of the Noncentral 𝑭 Distribution Approximation for 𝑹 𝑪 

The assumption that 𝑅 𝐶 (Eqn. (19)) adequately follows a noncentral 𝐹 distribution is a key 

requirement in the development of the proposed 𝑅 𝐶𝐶 criterion for selecting nonlinear models.  

In this section, the validity of this approximation is tested for the nonlinear SMs in Table 2.  

10000 Monte Carlo simulations with different additive random noise sequences were used to 

generate simulated data from the model in Eqns. (21) and (22), using the noise variance in 

Eqn. (23), the true parameter values in Table 1 and the input settings from the original data 

set.   

For each generated data set, 𝑅 𝐶 was calculated for each candidate model.  Empirical and 

theoretical cumulative distributions of 𝑅 𝐶  for SM1  are compared in Fig. 1.  The empirical 

distribution was obtained by sorting the 10000 values for 𝑅 𝐶  from lowest to highest and 

plotting the fraction of the 10000 values that is below each possible value of 𝑅 𝐶 .  The 

theoretical distribution function was calculated using the noncentral 𝐹 distribution function in 

MATLAB™ with 𝜆 =  𝑝 − 𝑝1 𝑅𝐶.  The true value of 𝑅𝐶 was calculated using Eqns. (17) and 

(18), where the MSE was approximated using sample biases and sample variances from the 

complete set of 10000 predictions. 
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Fig. 1 shows a close match between the empirical and the theoretical curves.  Note that 

similar results were observed for all of the other SMs in Table 2, confirming that the 

noncentral 𝐹  distribution is a good approximation for the distribution of 𝑅 𝐶  obtained using 

these nonlinear models.  This result demonstrates that it is appropriate to use the truncated 

Kubokawa estimator when computing 𝑅 𝐶𝐶, which is similar to the more general conclusion of 

Gallant (1987). 

(Figure 1) 

 

Model-Selection based on Original Data and 𝑹 𝑪𝑪 

In this section, 𝑅 𝐶𝐶 is used to select the best model based on the original data set, starting 

from the initial parameter guesses given in Table 2.  In the first step, each candidate model 

was fitted using nonlinear least squares, and the corresponding sum of squared residuals was 

calculated, and 𝑅 𝐶𝐶  values for each model were obtained using Eqns. (12), (19) and (20).  

Based on the original data set, the EM, with all the nine estimated parameters has the 

smallest 𝑅 𝐶𝐶 value and is therefore selected as the best model.  This is not surprising, due to 

the fact that the modeller used considerable effort and expertise when selecting the model 

form that we consider as the EM (Witt, 1974; Bates and Watts, 1988).   

In the next section, the performance of the proposed 𝑅 𝐶𝐶  model-selection criterion is 

illustrated using Monte-Carlo simulations involving situations with different noise variances, 

numbers of data points, and initial parameter guesses that make it more difficult to estimate 

all of the parameters in the Lubricant model. 

 

Performance of the Proposed Model-Selection Criterion 

To demonstrate the effectiveness of the proposed 𝑅 𝐶𝐶 criterion for selecting the model with 
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the lowest total mean-squared-prediction-error, four sets of Monte Carlo simulations were 

performed.  In the first set (Case 1), the noise setting is the same as in Eqn. (23) and data 

obtained at all four temperature settings are used for parameter estimation.  In the second set 

(Case 2), the noise variance was increased by a factor of 5, making it more difficult to obtain 

good parameter estimates.  In the third set (Case 3), the simulation settings were the same as 

in Case 1, except that simulated data obtained at 𝑇 = 98.9℃ were not available for parameter 

estimation.  In the fourth set (Case 4), the simulation settings were the same as in Case 3, but 

the initial guess for 𝜃5 was changed from −0.022 to 0, which is farther away from the true 

value of −0.02 .  Since 𝜃5  is held constant in SM1 , SM3  and SM4 , by setting 𝜃5 = 0 , the 

corresponding cubic term (𝜃5𝑥2
3) in the model is deleted.  As a result, these SMs have a 

simpler model structure than the EM.   

In each case, Monte Carlo simulations were performed 10000 times using different random 

noise sequences.  Sample means and sample variances from the 10000 sets of predictions 

were used to compute theoretical values of MSE and 𝑅𝐶𝐶 (Eqn. (17)), which are shown in 

Table 3 for each candidate model in all of the four cases considered.  The smallest MSE and 

𝑅𝐶𝐶 values, which correspond to the best model, are highlighted in bold.  The value of 𝑅𝐶𝐶 for 

the EM is zero by definition.  The results in Table 3 indicate that the EM will give the best 

model predictions, on average, using the settings from Cases 1 and 4, and that SM4, which 

has two fewer parameters, is preferred in Cases 2 and 3, when the data are less informative.  

Simplified models SM1, SM2 and SM3 will give worse predictions, on average, than the EM in 

all four Cases, as indicated by the larger values of MSE and positive values of 𝑅𝐶𝐶 in Table 3.   

(Table 3) 

Table 4 shows the fraction of the time that each model was selected using the 10000 

simulated data sets.  Results for the models that were selected most often are highlighted in 
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bold.  In Case 1, the EM, which is theoretically the best model according to Table 3, was 

selected as the best model 71.14% of the time and SM4 was selected 28.86% of the time.  In 

Cases 2 and 3, the best model SM4  was selected most often using 𝑅 𝐶𝐶  as the selection 

criterion, and in Case 4, the EM was selected most often due to the poor initial guess for 𝜃5.  

These results demonstrate the effectiveness of the proposed model selection criterion, even 

in situations when the difference in MSE between the best model and the second-best model 

is small (Case 3).  These simulation results also confirm that when data are noisy (Case 2) or 

few data points are available (Case 3), a simpler model tends to give better predictions.  

When the initial guess for a particular parameter is poor, as in Case 4, the proposed selection 

criterion tends to automatically select a model wherein that parameter is estimated. 

For comparison, Table 4 also shows the frequencies for each candidate model being 

selected using the Bayesian Information Criterion (𝐵𝐼𝐶).  In a previous article, we compared 

the tendencies of nine different model-selection criteria for selecting SMs and determined that 

𝐵𝐼𝐶 did a reliable job of selecting the best model, with the lowest mean-squared-prediction-

error, for the particular example studied (Wu et al., 2009).  𝐵𝐼𝐶 was computed for each SM 

from (McQuarrie and Tsai, 1998): 

 𝐵𝐼𝐶 = 𝑙𝑜𝑔  
𝑆𝑆𝐸𝑆
𝑛

 +
𝑙𝑜𝑔 𝑛 

𝑛
𝑝1 (24)  

Use of 𝐵𝐼𝐶  does not require assumptions about the true model structure, which is an 

advantage over 𝑅 𝐶𝐶 in situations where an EM is not available. The performance of 𝐵𝐼𝐶 and 

𝑅 𝐶𝐶 for selecting the nonlinear univariate model with lowest mean-squared-prediction-error is 

compared in the discussion below.   

(Table 4) 

Comparison of the 𝑅 𝐶𝐶 and 𝐵𝐼𝐶 results indicate that, in the particular example studied, the 

𝐵𝐼𝐶 tends to prefer simpler models.  The 𝐵𝐼𝐶 selected SM4 65.63% of the time in Case 1 and 
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selected the more complex EM preferred by 𝑅 𝐶𝐶 only 34.37% of the time.  In Case 3, the 𝐵𝐼𝐶 

selected SM1, with only 4 parameters, most often, whereas 𝑅 𝐶𝐶 selected the more complex 

SM4 most often.  In all four Cases shown in Table 4, the 𝑅 𝐶𝐶 criterion selected the best model 

(with the lowest theoretical expected total MSE for model predictions) most often, whereas 

the 𝐵𝐼𝐶 only selected the best model in Cases 2 and 4.   

Fig. 2 shows the sample means and 95% empirical confidence intervals for the per cent 

error in the model predictions obtained at each experimental setting.  These results were 

obtained using the 10000 Monte Carlo simulations for Case 3 and compares the quality of the 

predictions obtained from SM1, SM4 and the EM.  Note that SM1 was selected most often as 

the best model using the 𝐵𝐼𝐶 , whereas SM4  was selected most often using the proposed 

criterion 𝑅 𝐶𝐶.  As expected, the EM, which was used to generate the data, gives unbiased 

model predictions (i.e., the sample mean is approximately zero at all design points).  Also, as 

expected, the predictions obtained from the EM have wider 95% confidence intervals, 

corresponding to larger prediction variances.  Predictions obtained using SM4, which is the 

best model in terms of total MSE for the model predictions has narrower confidence intervals 

than the EM and has relatively small bias.  Predictions from SM1, which was preferred by 𝐵𝐼𝐶, 

have even smaller variance than predictions from SM4, but larger bias, on average.  Data 

settings that result in particularly biased predictions from SM1 are the settings for experiments 

20, 21, 30 and 35.  The bias introduced by using SM4  is considerably smaller at all 

experimental settings, confirming the effectiveness of the proposed 𝑅 𝐶𝐶  criterion for this 

example problem. 

(Figure 2) 
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4. Extension to Selection of Multivariate Models  

Many models that appear in the engineering literature have multiple types of response 

variables (e.g., temperatures, pressures, concentrations, yields).  If the model form is 

complicated, or the data available are not sufficiently informative, estimating all of the 

unknown parameters may be very difficult or even impossible (e.g., Kou et al., 2005a, b; Ben 

Zvi et al., 2004).  In these complicated nonlinear situations, there are often many competing 

simplified models that could be used, depending on the simplifying assumptions that are 

made and the subset of parameters that is estimated (Chu and Hahn, 2008; Lund and Foss, 

2008; Thompson et al., 2007, 2009).  The difference in complexity and nonlinearity between 

candidate SMs and the corresponding EM can be substantial.  For example, Kou et al. (2005a) 

developed an EM for ethylene-hexene copolymerization that had 55 parameters, and chose a 

SM with only 37 parameters because of the limited data available for parameter estimation.  

Note that Kou et al. (2005a) had many difficulties deciding how many parameters to estimate 

and how many to hold constant at their initial values. 

We now extend the proposed MSE-based model-selection criterion to the selection of 

simplified multivariate nonlinear models.  

Assume that a model of the form 

  

𝑦1

𝑦2

⋮
𝑦𝑑

 =  

𝑓1 𝑋, 𝜃 

𝑓2 𝑋,𝜃 
⋮

𝑓𝑑 𝑋,𝜃 

 +  

𝜀1

𝜀2

⋮
𝜀𝑑

  (25)  

can describe the behaviour of the process, where there are d  different response variables.  

Eqn. (25) may contain a set of algebraic equations or may be the numerical solution of a set 

of differential and algebraic equations.   
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Responses obtained using n  different sets of experimental conditions can be stacked 

vertically in a “rolled-out” format (Seber and Wild, 2003), so that n  responses for the first 

variable are at the top, followed by n  responses for the second variable, and so on, to give 

 

 
 
 
 
 
 
 
 
𝑦11

𝑦12

⋮
𝑦1𝑛
𝑦21

⋮
𝑦2𝑛

⋮
𝑦𝑑𝑛  

 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
 
𝑓1 𝑋1,𝜃 

𝑓1 𝑋2,𝜃 
⋮

𝑓1 𝑋𝑛 ,𝜃 

𝑓2 𝑋1,𝜃 
⋮

𝑓2 𝑋𝑛 ,𝜃 
⋮

𝑓𝑑 𝑋𝑛 ,𝜃  
 
 
 
 
 
 
 
 

+

 
 
 
 
 
 
 
 
𝜀11

𝜀12

⋮
𝜀1𝑛
𝜀21

⋮
𝜀2𝑛

⋮
𝜀𝑑𝑛  

 
 
 
 
 
 
 

 (26)  

It is convenient to express these equations in the form 

 𝒚 = 𝒇 𝑋,𝜃 + 𝜺 (27)  

where there are 𝑁 = 𝑛𝑑  elements in 𝒚  if all measurements are available for each set of 

independent variables.  If there are missing values for some measurements at some settings, 

then 𝑁 is the total number of data values available for parameter estimation. 

Due to the limited information content in the available data, we focus on situations where 

the noise in different response variables is independent, and 𝜀𝑖  (𝑖 = 1,2,… ,𝑑) is independently 

and identically distributed following a Normal distribution with zero mean and known variance 

𝜎𝑖
2 .  Prior information about 𝜎𝑖

2  may have been obtained from repeated experiments on a 

similar system.  Situations when 𝜎𝑖
2 is unknown are discussed at the end of this section.   

Based on the above assumptions, we have 

 𝜺 ~ 𝑁 0,𝑉  (28)  

with variance-covariance matrix 

 𝑉 =

 
 
 
 
𝜎1

2𝐼𝑛 0 ⋯ 0

0 𝜎2
2𝐼𝑛 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎𝑑

2𝐼𝑛 
 
 
 
  (29)  
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where 𝐼𝑛  is an 𝑛 × 𝑛 identity matrix.  The use of 𝑉 with diagonal structure in Eqn. (30) is for 

illustration purposes, and the following analysis is also applicable in situations where the 

noise in different response variables is correlated and the variance-covariance matrix is 

known.   

To use the proposed criterion for selecting multivariate simplified models, the model in Eqn. 

(29) is scaled as: 

 𝒚 = 𝒇  𝑋,𝜃 + 𝜺  (30)  

where 

 𝒚 = 𝐿𝒚    𝒇  𝑋,𝜃 = 𝐿𝒇 𝑋,𝜃     𝜺 = 𝐿𝜺 (31)  

The scaling matrix is 𝐿 =  𝑈𝑇 −1  where 𝑈  is an upper triangular matrix obtained from 

Cholesky decomposition of the variance-covariance matrix 𝑉 where 𝑈𝑇𝑈 = 𝑉. 

In the selection of multivariate models, we focus on selecting the best model with lowest 

MSE for the scaled predictions, 𝒚  = 𝒇  𝑋,𝜃  , where 𝜃  is obtained by fitting the scaled model in 

Eqn. (30) using nonlinear least squares.  Note that, after putting the multivariate model in 

“rolled-out” format and scaling using known variances, we formulate a univariate nonlinear 

model, where the noise, 𝜺 , is independently and identically distributed following a standard 

Normal distribution.  Therefore, the results derived in the previous section for selecting 

nonlinear univariate models can be used directly for selecting multivariate models.  Note that 

the parameter estimates obtained using ordinary least squares and the scaled model are 

identical to those that would be obtained using generalized least squares based on the 

original un-scaled multivariate model (Seber and Wild, 2003).   

Because the variance of the noise is known (i.e., 𝜎2 = 1 after scaling), 𝑅𝐶 in Eqn. (18) can 

be estimated using: 
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 𝑅 𝐶 =  𝑆𝑆𝐸𝑆 − 𝑆𝑆𝐸𝐸  𝑝 − 𝑝1   (32)  

where “𝑆𝑆𝐸” is the sum of squared residuals for the scaled model.  Note that Eqn. (32) is the 

same as the expression in Eqn. (9) for univariate linear models with 𝜎2 = 1.  Similar to 

univariate models, the distribution of  𝑝 − 𝑝1 𝑅 𝐶  can be approximated by a noncentral 𝜒2 

distribution, with  𝑝 − 𝑝1  degrees of freedom and noncentrality parameter 𝜆 =  𝑝 − 𝑝1 𝑅𝐶.  As 

a result, the truncated estimator given in Eqn. (13) can be used, and 𝑅𝐶𝐶 in Eqn. (17) can be 

estimated as 

 𝑅 𝐶𝐶 =
𝑝 − 𝑝1

𝑁
 𝑅 𝐶𝐾 − 1  (33)  

where 𝑁 is the total number of data values available for parameter estimation.  The candidate 

model with the lowest value of 𝑅 𝐶𝐶 is expected to give the lowest total MSE for the scaled 

predictions.   

In next section, a dynamic 𝛼-pinene model (Fuguitt and Hawkins, 1947; Box et al., 1973) is 

used in Monte Carlo simulations to demonstrate: 1) the quality of the approximate noncentral 

𝜒2 distribution for  𝑝 − 𝑝1 𝑅 𝐶; and 2) the performance of the proposed MSE-based criterion for 

selecting simplified multivariate nonlinear models. 

 

4.1 Example: 𝜶-Pinene Model  

The 𝛼-pinene thermal isomerization process studied by Fuguitt and Hawkins (1947) has 

three measured responses and the EM consists of five ordinary differential equations (ODEs) 

(Bates and Watts, 1988): 
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𝑑𝑓1

𝑑𝑡
= − 𝜃1 + 𝜃2 𝑓1 𝑦1 = 𝑓1 + 𝜀1

𝑑𝑓2

𝑑𝑡
= 𝜃1𝑓1

𝑑𝑓3

𝑑𝑡
= 𝜃2𝑓1 −  𝜃3 + 𝜃4 𝑓3 + 𝜃5𝑓5 𝑦3 = 𝑓3 + 𝜀3

𝑑𝑓4

𝑑𝑡
= 𝜃3𝑓3

𝑑𝑓5

𝑑𝑡
= 𝜃4𝑓3 − 𝜃5𝑓5 𝑦5 = 𝑓5 + 𝜀5

 (34)  

where 𝑓𝑖   𝑖 = 1, 2,… , 5  correspond to the concentrations of 𝛼-pinene, dipentene, alloocimene, 

pyronene, and dimer, respectively, (in mole %) taken at various times.  Only three 

independent measurements are available (𝑦1, 𝑦3 and 𝑦5).  Although the right-hand sides of 

the ODEs are linear in the parameters, the predicted responses are nonlinear in the 

parameters due to exponentials that appear in the analytical solution for the model equations 

(Box et al., 1973).   

The initial values used in the experimental runs are 

 
𝑓1

0 = 100%

𝑓2
0 = 𝑓3

0 = 𝑓4
0 = 𝑓5

0 = 0%
 (35)  

In the simulated experiments used to test the proposed MSE-based MSC, the times (in 

minutes) at which simulated measurements were generated match the times used by Fuguitt 

and Hawkins: 

 𝑡 = 10 ×  123 306 492 780 1068 1503 2262 3642 𝑇 (36)  

When generating the simulated experiments, it was assumed that the additive noise in 𝑦1, 𝑦3 

and 𝑦5 is Normally distributed with zero mean, and variance-covariance matrix: 

 𝑉 = 𝐶𝑜𝑣   

𝜀1

𝜀3

𝜀5

  =  

0.6𝐼𝑛 0 0
0 0.3𝐼𝑛 0
0 0 0.8𝐼𝑛

  (37)  

These variances are consistent with the original data.  In the analysis below, 𝑉 is assumed to 

be known both for model scaling and for model selection.   
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In this example, there are 𝑑 = 3  response variables and 𝑛 = 8  observations for each 

response, so there are 𝑁 = 𝑛𝑑 = 24 data points available for parameter estimation. 

The true parameter values 𝜃𝑡𝑟𝑢𝑒  used to conduct the Monte Carlo simulations were 

obtained by fitting the model to the original data and rounding the resulting parameter values.  

These true values are listed in Table 5, along with initial parameter guesses used for 

parameter estimation from the 10000 simulated data sets.  The last row of Table 5 shows the 

deviation between 𝜃𝑡𝑟𝑢𝑒  and 𝜃0 as a multiple of the standard error for the parameter estimates, 

which was computed from the 10000 simulations. 

(Table 5) 

To demonstrate the usefulness of the proposed MSE-based criterion, a set of candidate 

models was arbitrarily chosen by fixing some parameters and estimating the others, as shown 

in Table 6.   

(Table 6) 

 

Assessing the Validity of the Noncentral 𝝌𝟐 Distribution Approximation for  𝒑 − 𝒑𝟏 𝑹 𝑪 

The validity of the noncentral 𝜒2 approximation for  𝑝 − 𝑝1 𝑅 𝐶 determines the effectiveness 

of the Kubokawa estimator for 𝑅𝐶 in Eqn. (13).  10000 Monte Carlo simulations with different 

additive random noise sequences were used to generate simulated data based on the above 

settings.  For each generated data set, 𝑅 𝐶 was calculated for each SM using Eqn. (33). The 

noncentrality parameter 𝜆 = (𝑝 − 𝑝1)𝑅𝐶  for the theoretical non-central 𝜒2  distributions was 

calculated from the set of 10000 simulations using the sample mean and sample variance for 

the scaled predictions.   

Fig. 3 shows the empirical cumulative distributions of  𝑝 − 𝑝1 𝑅 𝐶  for SM1 along with the 

theoretical 𝜒2  distribution. The empirical curve matches the theoretical curve closely, 
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confirming that the noncentral 𝜒2 distribution is a good approximation for the distribution of 

 𝑝 − 𝑝1 𝑅 𝐶 obtained using this nonlinear model.  Similar results were observed for the other 

SMs in Table 6, as would be expected based on the results of Gallant (1987). 

(Figure 3) 

 

Performance of the Proposed Model-Selection Criterion 

We now examine the performance of the proposed 𝑅 𝐶𝐶  criterion for selecting the best 

model from the set of candidate models in Table 6.  Table 7 shows the theoretical value of the 

total MSE and 𝑅𝐶𝐶 for each candidate model, computed using Eqns. (16) and (17).  Note that 

the EM, which has the smallest value of MSE and 𝑅𝐶𝐶, is the best model in terms of mean-

squared-prediction-error.  Based on 10000 Monte Carlo simulations, frequencies of each 

model being selected using 𝑅 𝐶𝐶  are provided in the third row of Table 7.  The proposed 

criterion selects the EM more often than it selects the other models (42.35% of the time), 

which demonstrates the effectiveness of this criterion for determining the best model. 

Table 7 also shows the frequencies of each model being selected using 𝐵𝐼𝐶 .  These 

results were obtained using Eqn. (25) based on the scaled model in Eqn. (31).  Note that, 𝐵𝐼𝐶 

selected SM2 most often (54.25% of the time), and selected the best model (the EM) only 8.16% 

of the time. 

(Table 7) 

Fig. 4 shows the sample means and 95% empirical confidence intervals for the per cent 

error in the scaled model predictions obtained at each experimental setting.  These results 

were generated to compare the quality of the predictions obtained from SM2  and the EM.  

Note that SM2 was selected most often as the best model by the 𝐵𝐼𝐶, whereas the EM was 

preferred using the proposed criterion 𝑅 𝐶𝐶 .  As expected, the EM gives unbiased model 
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predictions.  Predictions obtained using SM2 have narrower confidence intervals than the EM, 

indicating smaller prediction variances, and have considerable bias for some data settings, 

especially predictions for data settings from 15 to 19.  These results confirm the tendency of 

the 𝐵𝐼𝐶 to select simpler models, with higher mean-squared-error, than are selected by the 

proposed 𝑅 𝐶𝐶 criterion. 

(Figure 4) 

 

4.2 Selecting Multivariate Models when Noise Variances are Unknown 

The analysis in the previous section was based on the assumption that the variance-

covariance matrix for the model errors was known a priori by the modeller.  Although this 

assumption is valid in situations where there has been considerable prior experimentation on 

similar systems, there are many situations where the modeller will have limited information 

about the variances of measured responses. There are both practical and theoretical 

challenges to extending the proposed 𝑅 𝐶𝐶 criterion to selection of models when the variance-

covariance matrix is unknown, especially in the situations where the information content in the 

available data is too weak to support reliable estimation of all of the unknown parameters.  In 

these less-than-ideal situations, attempting to estimate the parameters and the noise 

variances using, e.g., iteratively reweighted least squares or maximum likelihood methods, is 

not feasible (Seber and Wild, 2003).    

A Bayesian solution for dealing with uncertainty about variances of response variables 

would be to specify prior distributions for uncertain elements in the variance-covariance matrix, 

incorporating any knowledge about uncertainty that might be available to the modeller. 

Random sampling from the prior distributions could be used to scale the model, estimate the 

parameters and then calculate many different values of 𝑅 𝐶𝐶 for the candidate models under 



26 
 

consideration.  After a large number of re-sampling, parameter estimation and model 

selection calculations, the final best model could be determined as the one that was selected 

most often.  This brute-force approach may not be computationally feasible for complex 

models of chemical processes, where computation times would be prohibitive if the time 

required to solve the model equations and to estimate the parameters is considerable.  This 

methodology will be tested for relatively simple models in our future work. 

 

5. Conclusions 

Parameter estimation in complex models of chemical processes can be difficult, especially 

when there are many unknown parameters and the available data for parameter estimation 

are limited (e.g., when noisy data are obtained from poorly designed experiments). In these 

situations, simplified models with a reduced set of parameters to estimate are often preferred 

to complex models because they can give more reliable predictions.  Candidate simplified 

models can be obtained by making different assumptions during model formulation or by 

fixing some parameters at nominal values.  Modellers want to determine which simplified 

model will result in the best predictions, given the available data for parameter estimation.   

In this article, a reliable and easy-to-use model-selection criterion is developed to assist 

modellers in the selection of simplified linear or nonlinear models.  The new criterion 𝑅 𝐶𝐶 is 

derived by using total mean-squared-error (MSE) to account for bias and variance in the 

model predictions.  Calculation of 𝑅 𝐶𝐶 requires the modeller to have knowledge of (or to make 

an assumption about) the structure of a full model that is capable of describing the underlying 

behaviour of the process.  The effectiveness of this new criterion is demonstrated theoretically 

and using Monte Carlo simulations involving nonlinear single-response and multi-response 

models.   
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The performance of the 𝑅 𝐶𝐶 criterion is compared with that of the 𝐵𝐼𝐶.  Both criteria are 

effective, in that they tend to select simplified models, rather than complex models when data 

are limited. For the examples studied, the 𝑅 𝐶𝐶 criterion consistently selects simplified models 

that give the total lowest mean-squared-prediction-errors.  In some situations, the 𝐵𝐼𝐶 tends 

to select overly simplified models rather than the best model.  

The proposed 𝑅 𝐶𝐶  criterion can be applied to the selection of multi-response models when 

variances for the different response variables are assumed to be known.  Difficulties 

associated with multivariate model selection with unknown noise variances are discussed, 

and possible approaches are suggested and will be tested in our future work.   

     

Appendix: Summary of Various Estimators for the Noncentrality Parameter 

Improved estimators for 𝑅𝐶  can be derived based on various estimators for the 

noncentrality parameter 𝜆, which appears in noncentral 𝐹 and 𝜒2 distributions.  Results from 

Kubokawa et al. (1993) are summarized below. 

Given a random variable  𝑆, such that  𝑆~𝜒𝑣
2 𝜆 , the unbiased estimators for 𝜆 is  

 𝜆 0 = 𝑆 − 𝑣 (A1)  

which can take negative values.  The following improved estimator, which results in smaller 

mean-squared-error and no negative values, was proposed by Kubokawa et al. 

 𝜆 𝐾 = 𝑚𝑎𝑥  𝜆 0,
2

𝑣 + 2
𝑆  (A2)  

Similarly, in the case when random variable 𝑆  follows a noncentral F distribution, 

𝑆~𝐹𝑣1 ,𝑣2
 𝜆 , the uniformly minimum-variance unbiased estimators for 𝜆 is  

 𝜆 0 =
𝑣1 𝑣2 − 2 

𝑣2
𝑆 − 𝑣1 (A3)  
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Kubokawa et al. proposed the following truncated estimator, which cannot take negative 

values and which results in lower mean-squared-error 

 𝜆 𝐾 = 𝑚𝑎𝑥  𝜆 0,
2𝑣1 𝑣2 − 2 

𝑣2 𝑣1 + 2 
  (A4)  

The truncated estimator for 𝑅𝐶 in Eqns. (12) and (13) was derived from Eqns. (A2) and (A4).   

 

Nomenclature 

𝑑  number of response variable 

𝑒  stochastic component with any model mismatch 

𝑓  nonlinear model, deterministic response 

𝑙𝑜𝑔  natural logarithm 

𝑛  number of data points for a single response variable 

𝑝  total number of unknown parameters 

𝑠2   noise variance estimates 

𝑡  time 

𝑣  degree of freedom 

𝑥  input variable 

𝑦  vector of response variable 

𝐸  expected value 

𝐼𝑛    𝑛 × 𝑛  identity matrix 

𝐿  scaling matrix 

𝑁  total number of data points 
𝑃  projection matrix 

𝑅𝐶   critical ratio 

𝑅𝐶𝐶   corrected critical ratio 

𝑆  random variable 

𝑈  upper triangular matrix 

𝑉  variance-covariance matrix 

𝑋  matrix of regression variables 

𝑌  response variable 
 
Greek Symbols 
 

 

𝛽, 𝜃  unknown parameters 

𝜖  stochastic component 

𝜆  noncentrality parameter 

𝜎2  noise variance 
 
Superscripts 
 

 

   estimated value 
0  initial values 
𝑇   matrix transcript 
−1  matrix inverse 

 
Subscripts 
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1  first partitioned part 

2  second partitioned part 

𝑖   index 

𝑡𝑟𝑢𝑒   noise-free response or true values 

𝐸   extended model 

𝐾   Kubokawa estimate 

𝑆  simplified model 
 
Abbreviations 
 

 

𝐴𝐼𝐶  Akaike Information Criterion 

𝐵𝐼𝐶  Bayesian Information Criterion 

𝐶𝑜𝑣  Variance-Covariance Matrix 

EM Extended Model 

𝐹𝑃𝐸  Final Prediction Error 

𝑚𝑎𝑥  maximum 

MSC Model-Selection Criteria 
MSE Mean-Squared-Error 
SM Simplified Model 
𝑡𝑟  trace 
 
Others 
 

 

ℝ𝑛   column vector of length 𝑛 taking real values 
ℝ𝑛×𝑝    𝑛 × 𝑚  matrix taking real values 
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Table 1: True parameter values and initial parameter guesses used in Monte Carlo simulations 

 𝜃1  𝜃2  𝜃3  𝜃4  𝜃5  𝜃6  𝜃7  𝜃8  𝜃9  

𝜃𝑖 ,𝑡𝑟𝑢𝑒   1000 200 1.36 -0.2 -0.02 0.4 0.1 50 -0.45 

𝜃𝑖
0  960 210 1.42 -0.3 -0.022 0.35 0.05 48 -0.49 

deviation 1.66 1.88 1.71 8.00 1.49 1.53 34.12 2.41 1.80 
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Table 2: Candidate Models 

Candidate 
Model 

𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 𝜃7 𝜃8 𝜃9 
Number of 

Parameters 𝑝1 

𝑆𝑀1  √  √   √ √  4 

𝑆𝑀2   √  √ √ √ √  5 

𝑆𝑀3 √ √  √  √ √ √  6 

𝑆𝑀4 √ √ √ √  √ √  √ 7 

𝐸𝑀 √ √ √ √ √ √ √ √ √ 𝑝 = 9 
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Table 3: MSE for Model Predictions and Corresponding True Values of 𝑹𝑪𝑪 for Each Candidate Model in All Four 
Cases 

 SM1 SM2 SM3 SM4 EM 

Case 1 
MSE 0.2934 1.1293 0.2147 0.0261 0.0184 

𝑅𝐶𝐶  2.5942 10.4799 1.8517 0.0721 0 

Case 2 
MSE 0.3257 1.1690 0.2627 0.0821 0.0905 

𝑅𝐶𝐶  0.4439 2.0350 0.3249 -0.0157 0 

Case 3 
MSE 0.0310 0.9557 0.0308 0.0175 0.0182 

𝑅𝐶𝐶  0.1684 12.3355 0.1657 -0.0088 0 

Case 4 
MSE 0.1238 0.9557 0.0943 0.0404 0.0182 

𝑅𝐶𝐶  1.3892 12.3355 1.0010 0.2928 0 
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Table 4: Fraction of Each Candidate Model Being Selected Using 𝑹 𝑪𝑪 and 𝑩𝑰𝑪 

 
Fraction of Each Model Being Selected 

SM1 SM2 SM3 SM4 EM 

Case 1 
𝑅 𝐶𝐶  0 0 0 0.2886 0.7114 

𝐵𝐼𝐶  0 0 0 0.6563 0.3437 

Case 2 
𝑅 𝐶𝐶  0.0037 0 0.0055 0.7088 0.2820 

𝐵𝐼𝐶  0.0939 0 0.0106 0.8515 0.0440 

Case 3 
𝑅 𝐶𝐶  0.2007 0 0.0479 0.5274 0.2240 

𝐵𝐼𝐶  0.5777 0 0.0235 0.3788 0.0200 

Case 4 
𝑅 𝐶𝐶  0 0 0 0.0435 0.9565 

𝐵𝐼𝐶  0.0034 0 0.0005 0.2012 0.7949 
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Table 5: true parameter values and initial parameter guesses used in Monte Carlo simulations 

 𝜃1  𝜃2  𝜃3  𝜃4  𝜃5  

𝜃𝑖 ,𝑡𝑟𝑢𝑒  (× 10−5) 6 3 2 28 4 

𝜃𝑖
0 (× 10−5) 5.84 2.65 1.63 24.5 5.5 

deviation 2.91 7.16 1.87 1.61 2.02 
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Table 6: Candidate Models.  Parameters indicated by √ are included for estimation in the corresponding SM and the 
remaining parameters are fixed at their initial guesses in Table 5. 

Candidate 
Model 

𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 
Number of 

Parameters 𝑝1 

𝑆𝑀1 √     1 

𝑆𝑀2  √  √  2 

𝑆𝑀3 √  √  √ 3 

𝑆𝑀4 √ √ √  √ 4 

𝐸𝑀 √ √ √ √ √ 𝑝 = 5 
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Table 7: True Values of MSE and 𝑹𝑪𝑪 and the Frequencies of Each Model Being Selected using 𝑹 𝑪𝑪 and 𝑩𝑰𝑪 

 SM1  SM2  SM3  SM4  EM  

Theoretical 
Value 
 

MSE 77.2407 9.4627 10.1075 7.3132 5.0643 

𝑅𝐶𝐶  3.0073 0.1833 0.2101 0.0937 0 

Frequencies 
 

𝑅 𝐶𝐶  0 0.2473 0.1397 0.1895 0.4235 

𝐵𝐼𝐶  0 0.5425 0.2160 0.1599 0.0816 
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Fig. 1: Comparison of the Theoretical Cumulative Distribution (----) for 𝑹 𝑪 and the Empirical Distribution (—) 
Obtained from 10000 Monte Carlo Simulations for SM1.  Note that the two curves are nearly coincident. 
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Fig. 2: sample means and 95% empirical confidence intervals (CI) of  𝒇 𝑿,𝜽  − 𝒇 𝑿,𝜽  𝒇 𝑿,𝜽   for 𝐒𝐌𝟏, 𝐒𝐌𝟒 and the 

𝐄𝐌 at each prediction point (Case 3) 
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Fig. 3: Comparison of the Theoretical Cumulative Distribution (----) for 𝑹 𝑪 and the Empirical Distribution (—) 
Obtained from 10000 Monte Carlo Simulations for SM1 in Table 4. 

 

20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SM1

fr
e
q
u
e
n
c
y



44 
 

 

Fig. 4: sample means and 95% empirical confidence intervals (CI) of  𝒇  𝑿,𝜽  − 𝒇  𝑿,𝜽  𝒇  𝑿,𝜽   for 𝐒𝐌𝟏 and the 

𝐄𝐌 at each prediction point.  Observation numbers 1 to 8 correspond to 𝜶-pinene (𝒇𝟏) predictions, numbers 9 to 16 

correspond to alloocimene (𝒇𝟑) and numbers 17 to 24 correspond to the dimer (𝒇𝟓).   
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