
Full Paper

160
Parameter Estimation in a Simplified MWD
Model for HDPE Produced by a Ziegler-Natta
Catalyst
Duncan E. Thompson, Kim B. McAuley,* P. James McLellan
A simplified steady-state model to predict MWDs of ethylene/butene and ethylene/hexene
copolymers produced industrially using heterogeneous Z-N catalysts is developed. Estim-
ability analysis is used to guide model simplification and to determine which parameters can
be estimated using the available data. Scaling of
response variables and parameters using infor-
mation about their uncertainties ensures that
appropriate results are obtained from the estim-
ability analysis. Parameter estimates are obtained
to provide good predictions of the measured
MWDs. Although the parameter values obtained
are specific to the Z-N catalyst of our industrial
sponsor, the method should be useful for
parameter estimation and model simplification
in other catalytic polymerization systems.
Introduction

Engineerswant to predict end-use properties of polyolefins

from reactor operating conditions so that they can

optimize reactor operations and design new products. In

our previous work,[1] we developed a simplified mathe-

matical model to predict molecular weight distributions

(MWDs) of ethylene/hexene copolymers, and used indus-

trial data to obtain parameter estimates. This simplified

model predicts MWD from reactor operating conditions

(hydrogen concentration, ethylene partial pressure, hex-

ene concentration) but does not account for temperature

effects. In this work, we include temperature effects, and

we extend the model to include both butene and hexene
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comonomers. Many end-use properties of high-density

polyethylene (HDPE), such as tensile strength, impact

strength, melting point, and Young’s modulus, are

influenced by the MWD. The model proposed in this

paper predicts MWD, and can be used in combination with

other models[2] to predict end-use properties from reactor

operating conditions.

The extended non-isothermal model has many more

parameters than the original isothermal model,[1] and not

all of these parameters can be readily estimated using the

available industrial data set.[3] Estimability analysis[4–6] is

used to determine which parameters can be estimated

from the available data. The unestimable parameters are

either left at their initial guesses, or are removed from the

model by further simplification. In deciding which

parameters can be estimated, the estimability analysis

technique accounts for the model structure, for correlated

effects of model parameters, and for the level of

uncertainty in each of the initial parameter guesses. The
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algorithm produces a list of model parameters, ranked

from most to least estimable. A revised version of the

estimability algorithm, which was originally described by

Yao et al.[6] and by Kou et al.,[4] is provided in the Appendix.

Recently, Lund and Foss[7] presented a similar parameter-

ranking technique that produces equivalent results to

those from the method of Kou et al., using more

computationally complex calculations.

This paper begins by describing the extension of the

original isothermal copolymerization model to account for

butene incorporation and for temperature effects. Next,

the estimability ranking is determined. Some inestimable

parameters are removed from the model by assuming

similar reaction rates (and similar activation energies) at

different types of catalyst sites. The parameter estimation

approach is described and the results are assessed for

physical consistency. The final parameter estimates

obtained are physically reasonable and will provide a

useful starting point for designing new experiments to

further improve parameter estimates and model predic-

tions.
Model Extension

The extended simplified model, which accounts for

temperature effects and for incorporation of both butene

and hexene comonomers, is shown in Table 1.

As shown in Figure 1, Equation (1.1) uses the sum of five

Flory distributions to predict points on the MWD curve

obtained using steady-state reactor operating condi-

tions.[3] mj is the mass fraction of copolymer produced

at the jth type of active site, tj is the ratio of the rate of

chain-stopping to chain-propagating events at the jth type

of active site, and r is the chain length. The expression for tj
in Equation (1.2) is different from that in the original

simplified model because it includes Arrhenius expres-

sions to account for the temperature dependence of

reaction rates. kHtj0 is the rate constant for chain transfer

to hydrogen at the reference temperature, T0, and kEpj0 is the

rate constant for propagation with ethylene at the same

reference temperature. Note that chain propagation with

butene and hexene are ignored in Equation (1.2). This is a

reasonable assumption for HDPE copolymers, because the

mole fraction of butene or hexene incorporated is small. kbtj
and kItj are rate constants for b-hydride elimination and for

chain transfer to impurities, respectively. Note that no

temperature effects are included in the second term of

Equation (1.2). The concentration of impurities in the

reactor is unknown, so the overall coefficient involving kbtj
and kItj is lumped into a single parameter for estimation.

Also note that chain transfer to comonomers is neglected

in Equation (1.2) because these reactions are negligible

compared to other chain-stopping reactions.[1,8]
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Equation (1.3) shows that the mass fraction of

copolymer produced at site j can be determined from a

numerator term, Nj, divided by the sum of the numerators

for all sites. The expression for N1 in Equation (1.4) was

derived in an analogous fashion to the expression for N1 in

our earlier isothermal hexene copolymerization model.[1]

Activation energies appear in this extended model to

account for temperature effects, and additional additive

terms account for butene incorporation. Equation (1.4)

contains the chain-transfer-to-hydrogen rate constant, kHtj0 ,

because we assume that sites are temporarily dormant

after chain transfer to hydrogen,[1,8] as shown in the

mechanism in Table 2. Dormant sites are reinitiated by

reactions with ethylene, butene, and hexene. Kissin[8]

found that reinitiation reactions with comonomers are

important at the low-molecular-weight sites, but not at

the high-molecular-weight sites. Because of Kissin’s

findings, it is assumed that low-molecular-weight sites

(sites 1 and 2) undergo reinitiation reactions with

ethylene and comonomers, and that high-molecular-

weight sites (sites 3 to 5) only reinitiate with ethylene.[1]

Expressions for numerators N2–N5 in Equation (1.5)–(1.8)

are similar to Equation (1.4) for N1. Note that site 2 was

used as a reference site in the derivation of these

expressions[1] and that bj, which appears in Equation

(1.4) and (1.6)–(1.8), is the ratio of the number of catalyst

sites of type j (growing chains plus dormant sites) to

catalyst sites of type 2. Since site 2 is the reference site,

b2¼ 1.

Since the kinetic rate constants in the model always

appear as ratios, it is impossible to estimate the individual

rate constants independently. The model has been

reparameterized, as shown in Table 3, to show the lumped

parameters that we attempt to estimate. Definitions of

these lumped parameters are provided in Table 4. Para-

meters K1j and K4 defined in Equation (3.1) and (3.2)

influence tj, whereas the a parameters in Table 4 are used

to predict mass fractions, mj. The e parameters account for

temperature effects.

Deconvolution analysis[3] of the industrial MWD data

revealed that sites 1 and 2 (the low-molecular-weight

sites) tend to respond in a similarmanner to changes in the

reactor operating conditions, and that sites 3–5 (the high-

molecular-weight sites) also tend to respond together. This

behavior indicates that there may be only two chemically

distinct types of active sites on the Ziegler-Natta (Z-N)

catalyst and that broadening of the MWD may be due to

catalyst-support interactions. Therefore, as shown in

Table 4, some parameter values are shared between

similar sites to reduce the number of parameters that

appear in the model. For example, a1j, the ratio of the

propagation rate constant for ethylene to the reinitiation

rate constant for ethylene, is assumed to be common to

sites 1 and 2 (the low-molecular-weight sites) and a
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separate common value is used for the three high-

molecular-weight sites (see Equation 4.3 and 4.4).

Based on the work of Kissin,[8] our previous deconvolu-

tion analysis,[3] and experience with estimating para-

meters in the original isothermal model,[1] further

simplifying assumptions weremade to reduce the number

of new parameters included in the extended non-

isothermal model shown in Table 3:
Table 1. Kinetic model equations for predicting MWD.

dW

d log10 Mw
¼ m1 r2 lnð10Þt21 expð�t1rÞ

� �
þm2 r2 lnð10Þt22

�
þm3 r2 lnð10Þt23 expð�t3rÞ

� �
þm4 r2 lnð10Þt24

�
þm5 r2 lnð10Þt25 expð�t5rÞ

� �

tj ¼
kHtj0 exp

�EHtj
R

1

T
� 1

T0

� � !

kEpj0 exp
�EEpj
R

1

T
� 1

T0

� � ! H2½ �
C2½ � þ

kbtj þ kItj I½ �
� �

kEpj

1

C2½ �

mj ¼
NjP5

j¼1

Nj

N1 ¼
kEp10 exp

�EEp1
R

1

T
� 1

T0

� � !
b1

kEp20 exp
�EEp2
R

1

T
� 1

T0

� � ! þ
kButp10

exp
�EButp1

R

1

T
�

� 

kEp20 exp
�EEp2
R

1

T

� 
0
BBBB@

1þ
kHt20 exp

�EHt2
R

��

kEi20 exp
�EEij
R

1

T
� 1

T0

� � !
C2½ � þ kButi20

exp
�EButi2

R

��
0
BBBB@

Q
j¼3;4;5

1þ
kHtj0 exp

�EHtj
R

1

T
� 1

T0

� � !
H2½ �

kEij0 exp
�EEij
R

1

T
� 1

T0

� � !
C2½ �

0
BBBB@

1
CCCCA

N2 ¼ 1þ
kButp20

exp
�EButp2

R

1

T
� 1

T0

� � !

kEp20 exp
�EEp2
R

1

T
� 1

T0

� � ! C4½ �
C2½ � þ

kHex
p20

exp
�EHp

R

 

kEp20 exp
�E

R

 
0
BBBB@

1þ
kHt10 exp

�EHt1
R

��

kEi10 exp
�EEi1
R

1

T
� 1

T0

� �� �
C2½ � þ kButi10

exp
�EButi1

R

��
0
BBB@

Q
j¼3;4;5

1þ
kHtj0 exp

�EHtj
R

1

T
� 1

T0

� � !
H2½ �

kEij0 exp
�EEij
R

1

T
� 1

T0

� � !
C2½ �

0
BBBB@

1
CCCCA
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Since t values do not appear to changewith temperature

in the absence of hydrogen,[8] we assume that K4 is not

temperature dependent.

a1, the ratio of the rate constant for propagation with

ethylene to the rate constant for reinitiation with

ethylene, was assumed to be temperature independent,

because this ratio was not very influential in the earlier

isothermal model.
expð�t2rÞ
�

expð�t4rÞ
�

(1.1)

(1.2)

(1.3)

1

T0

�!
b1

� 1

T0

�! C4½ �
C2½ � þ

kHex
p10

exp
�EHex

p1

R

1

T
� 1

T0

� � !
b1

kEp20 exp
�EEp2
R

1

T
� 1

T0

� � ! C6½ �
C2½ �

1
CCCCA

1

T
� 1

T0

��
H2½ �

1

T
� 1

T0

��
C4½ � þ kHex

i20
exp

�EHex
i2

R

1

T
� 1

T0

� �� �
C6½ �

1
CCCCA

(1.4)

ex
2 1

T
� 1

T0

� �!

E
p2 1

T
� 1

T0

� �! C6½ �
C2½ �

1
CCCCA

1

T
� 1

T0

��
H2½ �

1

T
� 1

T0

��
C4½ � þ kHex

i10
exp

�EHex
i1

R

1

T
� 1

T0

� �� �
C6½ �

1
CCCA

(1.5)
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N3 ¼
kEp30 exp

�EEp3
R

1

T
� 1

T0

� � !
b3

kEp20 exp
�EEp2
R

1

T
� 1

T0

� � ! þ
kButp30

exp
�EButp3

R

1

T
� 1

T0

� � !
b3

kEp20 exp
�EEp2
R

1

T
� 1

T0

� � ! C4½ �
C2½ � þ

kHex
p30

exp
�EHex

p3

R

1

T
� 1

T0

� � !
b3

kEp20 exp
�EEp2
R

1

T
� 1

T0

� � ! C6½ �
C2½ �

0
BBBB@

1
CCCCA

Q
j¼1;2

1þ
kHtj0 exp

�EHtj
R

1

T
� 1

T0

� � !
H2½ �

kEij0 exp
�EEij
R

1

T
� 1

T0

� � !
C2½ � þ kButij0

exp
�EButij

R

1

T
� 1

T0

� � !
C4½ � þ kHex

ij0
exp

�EHex
ij

R

1

T
� 1

T0

� � !
C6½ �

0
BBBB@

1
CCCCA

Q
j¼4;5

1þ
kHtj0 exp

�EHtj
R

1

T
� 1

T0

� � !
H2½ �

kEij0 exp
�EEij
R

1

T
� 1

T0

� � !
C2½ �

0
BBBB@

1
CCCCA

(1.6)

N4 ¼
kEp40 exp

�EEp4
R

1

T
� 1

T0

� � !
b4

kEp20 exp
�EEp2
R

1

T
� 1

T0

� � ! þ
kButp40

exp
�EButp4

R

1

T
� 1

T0

� � !
b4

kEp20 exp
�EEp2
R

1

T
� 1

T0

� � ! C4½ �
C2½ � þ

kHex
p40

exp
�EHex

p4

R

1

T
� 1

T0

� � !
b4

kEp20 exp
�EEp2
R

1

T
� 1

T0

� � ! C6½ �
C2½ �

0
BBBB@

1
CCCCA

Q
j¼1;2

1þ
kHtj0 exp

�EHtj
R

1

T
� 1

T0

� � !
H2½ �

kEij0 exp
�EEij
R

1

T
� 1

T0

� � !
C2½ � þ kButij0

exp
�EButij

R

1

T
� 1

T0

� � !
C4½ � þ kHex

ij0
exp

�EHex
ij

R

1

T
� 1

T0

� � !
C6½ �

0
BBBB@

1
CCCCA

Q
j¼3;5

1þ
kHtj0 exp

�EHtj
R

1

T
� 1

T0

� � !
H2½ �

kEij0 exp
�EEij
R

1

T
� 1

T0

� � !
C2½ �

0
BBBB@

1
CCCCA

(1.7)

N5 ¼
kEp50 exp

�EEp5
R

1

T
� 1

T0

� � !
b5

kEp20 exp
�EEp2
R

1

T
� 1

T0

� � ! þ
kButp50

exp
�EButp5

R

1

T
� 1

T0

� � !
b5

kEp20 exp
�EEp2
R

1

T
� 1

T0

� � ! C4½ �
C2½ � þ

kHex
p50

exp
�EHex

p5

R

1

T
� 1

T0

� � !
b5

kEp20 exp
�EEp2
R

1

T
� 1

T0

� � ! C6½ �
C2½ �

0
BBBB@

1
CCCCA

Q
j¼1;2

1þ
kHtj0 exp

�EHtj
R

1

T
� 1

T0

� � !
H2½ �

kEij0 exp
�EEij
R

1

T
� 1

T0

� � !
C2½ � þ kButij0

exp
�EButij

R

1

T
� 1

T0

� � !
C4½ � þ kHex

ij0
exp

�EHex
ij

R

1

T
� 1

T0

� � !
C6½ �

0
BBBB@

1
CCCCA

Q
j¼3;4

1þ
kHtj0 exp

�EHtj
R

1

T
� 1

T0

� � !
H2½ �

kEij0 exp
�EEij
R

1

T
� 1

T0

� � !
C2½ �

0
BBBB@

1
CCCCA

(1.8)

Table 1. Continued
As shown in Table 5, initial guesses for parameters

involving hexene and ethylene were obtained from the

isothermal model.[1] Parameters involving butene were

given the same initial guesses as the corresponding hexene

parameters. Initial values for the Arrhenius-type para-

meters were calculated from deconvolution results pre-

sented by Kissin.[8]
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The initial parameter values in Table 5 can be used to

predict comonomer incorporation (i.e., using Equation

3.9a–3.10b in Table 3). Several simplifying assumptions

were made in the development of these equations, so that

the approximate level of comonomer incorporation could

be predicted without including additional parameters in

the model. The most problematic assumption required is
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Figure 1. The predicted MWD is the sum of the five component
Flory distributions.

164
that the rate of propagation is not influenced significantly

by the terminal group (ethylene, butene, or hexene) on the

growing polymer chain.[1] The industrial data set[3] used

for fitting the model parameters contains overall como-

nomer incorporation measurements and measured MWD

curves. If detailed comonomer composition distribution or

sequence length information were also available, then a

more complex copolymerization model that properly

accounts for reactivity ratios at the various type of sites

could have been estimated. Nevertheless, the main

objective of the current research is to develop a simplified
Table 2. Reaction mechanism for ethylene a-olefin terpolymerizatio
influence of the terminal monomer on reaction rates).

Propagation with ethylene

Propagation with comonomer (butene)

Propagation with comonomer (hexene)

Chain transfer to hydrogen

Chain transfer to cocatalyst and other impurities

Spontaneous chain transfer (b-hydride elimination)

Reinitiation with ethylene

Reinitiation with butene

Reinitiation with hexene

Macromol. React. Eng. 2009, 3, 160–177
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model to predict the MWD curve from reactor operating

conditions. Equation (3.10) is included in the model to

ensure that the parameter values in the MWD model are

consistent with observed overall levels of comonomer

incorporation.
Estimability Analysis

The model parameters were ranked from most estimable

to least estimable using the estimability ranking techni-

que described in the Appendix. This parameter ranking

technique uses a sensitivity matrix whose elements,

@yi=@uk, are partial derivatives of each predicted model

response, yi, with respect to each of the parameters of

interest, uk. The yi values for each experimental run consist

of 100 equally spaced points (on the log scale) from the

predicted MWD curve and a single comonomer incorpora-

tion (in mass fraction) value. Proper scaling of each

element of the sensitivity matrix is required to ensure that

the elements are dimensionally consistent and that some

parameters or predicted responses do not dominate the

ranking due to their large numerical values. To address this

concern, Kou et al.[4] used initial guesses for parameters,

and typical values for predicted responses as scaling

factors. The proposed algorithm in the Appendix uses an

improved method for scaling that provides the modeler

with an opportunity to include additional knowledge. As

shown in the Appendix, each element of the sensitivity

matrix is scaled using the uncertainty in the initial value

for the corresponding parameter, suk, and the uncertainty
n (note that this simplified mechanism does not account for the

Yj;n þ C2 �!
kE
pj

Yj;nþ1

Yj;n þ C4 �!
kBut
pj

Yj;nþ1

Yj;n þ C6 �!
kHex
pj

Yj;nþ1

Yj;n þH2 �!
kH
tj

YjD

Yj;n þ I �!
kI
tj

Yj;1

Yj;n �!
k
b
tj

Yj;1

YjD þ C2 �!
kE
ij

Yj;1

YjD þ C4 �!
kBut
ij

Yj;1

YjD þ C6 �!
kHex
ij

Yj;1
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Table 3. Reparameterized model equations to predict MWD and comonomer incorporation.

dW

d log10 Mw
¼ m1 r2 lnð10Þt21 expð�t1rÞ

� �
þm2 r2 lnð10Þt22 expð�t2rÞ

� �
þm3 r2 lnð10Þt23 expð�t3rÞ

� �
þm4 r2 lnð10Þt24 expð�t4rÞ

� �
þm5 r2 lnð10Þt25 expð�t5rÞ

� �
(3.1)

tj ¼ K1j exp "K1j
1

T
� 1

T0

� �� �
H2½ �
C2½ � þ K4

1

C2½ �
(3.2)

mj ¼
NjP5

j¼1

Nj

(3.3)

N1 ¼ a21 exp "a21
1

T
� 1

T0

� �� �
þ a3Blow exp "a3Blow

1
T � 1

T0

� �� � C4½ �
C2½ � þ a3Hlow exp "a3Hlow

1

T
� 1

T0

� �� �
C6½ �
C2½ �

� �

1þ a1lowK12 exp "K12
1
T � 1

T0

� �� � H2½ �

C2½ � þ a4B exp "a4B
1

T
� 1

T0

� �� �
C4½ � þ a4H exp "a4H

1

T
� 1

T0

� �� �
C6½ �

0
BB@

1
CCA

Q
j¼3;4;5

1þ a1highK1j exp "K1j
1

T
� 1

T0

� �� �
H2½ �
C2½ �

� �

(3.4)

N2 ¼ 1þ a3Blow exp "a3Blow
1

T
� 1

T0

� �� �
C4½ �
C2½ � þ a3Hlow exp "a3Hlow

1

T
� 1

T0

� �� �
C6½ �
C2½ �

� �

1þ a1lowK11 exp "K11
1

T
� 1

T0

� �� �
H2½ �

C2½ � þ a4B exp "a4B
1

T
� 1

T0

� �� �
C4½ � þ a4H exp "a4H

1

T
� 1

T0

� �� �
C6½ �

0
BB@

1
CCA

Q
j¼3;4;5

1þ a1highK1j exp "K1j
1

T
� 1

T0

� �� �
H2½ �
C2½ �

� �

(3.5)

N3 ¼ a23 exp "a23
1

T
� 1

T0

� �� �
þ a3Bhigh exp "a3Bhigh

1

T
� 1

T0

� �� �
C4½ �
C2½ � þ a3Hhigh exp "a3Hhigh

1

T
� 1

T0

� �� �
C6½ �
C2½ �

� �

Q
j¼1;2

1þ a1lowK1j exp "K1j
1

T
� 1

T0

� �� �
H2½ �

C2½ � þ a4B exp "a4B
1

T
� 1

T0

� �� �
C4½ � þ a4H exp "a4H

1

T
� 1

T0

� �� �
C6½ �

0
BB@

1
CCA

Q
j¼4;5

1þ a1highK1j exp "K1j
1

T
� 1

T0

� �� �
H2½ �
C2½ �

� �

(3.6)

N4 ¼ a24 exp "a23
1

T
� 1

T0

� �� �
þ a3Bhigh exp "a3Bhigh

1

T
� 1

T0

� �� �
C4½ �
C2½ � þ a3Hhigh exp "a3Hhigh

1

T
� 1

T0

� �� �
C6½ �
C2½ �

� �
Q

j¼1;2

1þ a1lowK1j exp "K1j
1
T � 1

T0

� �� � H2½ �
C2½ � þ a4B exp "a4B

1
T � 1

T0

� �� �
C4½ � þ a4H exp "a4H

1
T � 1

T0

� �� �
C6½ �

0
@

1
A

Q
j¼3;5

1þ a1highK1j exp "K1j
1
T � 1

T0

� �� �
H2½ �
C2½ �

� �

(3.7)

N5 ¼ a25 exp "a25
1

T
� 1

T0

� �� �
þ a3Bhigh exp "a3Bhigh

1

T
� 1

T0

� �� �
C4½ �
C2½ � þ a3Hhigh exp "a3Hhigh

1

T
� 1

T0

� �� �
C6½ �
C2½ �

� �

Q
j¼1;2

1þ a1lowK1j exp "K1j
1

T
� 1

T0

� �� �
H2½ �

C2½ � þ a4B exp "a4B
1

T
� 1

T0

� �� �
C4½ � þ a4H exp "a4H

1

T
� 1

T0

� �� �
C6½ �

0
BB@

1
CCA

Q
j¼3;4

1þ a1highK1j exp "K1j
1

T
� 1

T0

� �� �
H2½ �
C2½ �

� �

(3.8)
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fBj ¼
1

1þ
a2j exp "a2j

1

T
� 1

T0

� �� �

a3Bj exp "a3Bj
1

T
� 1

T0

� �� � 1

C4½ �
C2½ �

(3.9a)

fHj ¼
1

1þ
a2j exp "a2j

1

T
� 1

T0

� �� �

a3Hj exp "a3Hj
1

T
� 1

T0

� �� � 1

C6½ �
C2½ �

(3.9b)

mB ¼
X
j¼1�5

mj
3fBj

1þ 2fBj

� �
(3.10a)

mH ¼
X
j¼1�5

mj
3fHj

1þ 2fHj

� �
(3.10b)

Table 3. Continued

Table 4. Lumped parameter definitions.

K1j ¼
kHtj0
kEpj0

(4.1)

K4j ¼
kbtj þ kItj I½ �
� �

kEpj

(4.2)

a1low ¼ a11 ¼ a12 ¼
kEp10
kEi10

¼
kEp20
kEi20

(4.3)

a1high ¼ a13 ¼ a14 ¼ a15 ¼
kEp30
kEi30

¼
kEp40
kEi40

¼
kEp50
kEi50

(4.4)

a2j ¼
kEpj0bj

kEp20

(4.5)

a3Blow ¼ a3B1 ¼ a3B2 ¼
kButp10

b1

kEp20
¼

kButp20

kEp20

(4.6)

a3Bhigh ¼ a3B3 ¼ a3B4 ¼ a3B5

kButp30
b3

kEp20
¼

kButp40
b4

kEp20
¼

kButp50
b5

kEp20

(4.7)

a3Hlow ¼ a3H1 ¼ a3H2 ¼
kHex
p10

b1

kEp20
¼

kHex
p20

kEp20

(4.8)

a3Hhigh ¼ a3H3 ¼ a3H4 ¼ a3H5 ¼
kHex
p30

b3

kEp20
¼

kHex
p40

b4

kEp20
¼

kHex
p50

b5

kEp20

(4.9)

a4B ¼
kButi10

kEi10
¼

kButi20

kEi20

(4.10)

a4H ¼
kHex
i10

kEi10
¼

kHex
i20

kEi20

(4.11)

"Kj ¼
EEpj � EHtj

R

(4.12)

166
Macromol. React. Eng. 2009, 3, 160–177

� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim DOI: 10.1002/mren.200800052



Parameter Estimation in a Simplified MWD Model for HDPE . . .

"a2j ¼
EEp2 � EEpj

R

(4.13)

"a3Blow ¼ "a3B1 ¼ "a3B2 ¼
EEp2 � EButp1

R
¼

EEp2 � EButp2

R

(4.14)

"a3Bhigh ¼ "a3B3 ¼ "a3B4 ¼ "a3B5 ¼
EEp2 � EButp3

R
¼

EEp2 � EButp4

R
¼

EEp2 � EButp5

R

(4.15)

"a3Hlow ¼ "a3H1 ¼ "a3H2 ¼
EEp2 � EHex

p1

R
¼

EEp2 � EHex
p2

R

(4.16)

"a3Hhigh ¼ "a3H3 ¼ "a3H4 ¼ "a3H5 ¼
EEp2 � EHex

p3

R
¼

EEp2 � EHex
p4

R
¼

EEp2 � EHex
p5

R

(4.17)

"a4B ¼ EEi1 � EButi1

R
¼ EEi2 � EButi2

R

(4.18)

"a4H ¼ EEi1 � EHex
i1

R
¼ EEi2 � EHex

i2

R

(4.19)

Table 5. Initial guesses, uncertainties and estimability ranking of the parameters in the model in Table 3.

Parameter Initial value Scaling value Rank

K11 0.0149 6.209� 10�3 27

K12 0.0030 9.0� 10�4 25

K13 0.0012 5.57� 10�4 17

K14 0.0003 5.39� 10�4 23

K15 0 8.8781� 10�3 3

i4 9.4� 10�4 1.3055� 10�4 18

a1low 1 325.8 1 893.7 4

a1high 3 222.2 5 048.4 5

a21 0.4755 0.2074 21

a23 1.9492 1.0260 14

a24 0.3370 0.2042 9

a25 0.0579 0.0656 11

a3Blow 0.4370 0.5 19

a3Bhigh 1.73� 10�9 0.5 7

a3Hlow 0.4370 0.5 22

a3Hhigh 1.73� 10�9 0.5 8

a4B 0.0491 51.3868 1

a4H 0.0491 51.3868 2

eK11 �2828.7 �1414.4 15

eK12 �1603 �801.5 10

eK13 �2613.9 �1307 6

eK14 �3652 �1826 20

eK15 �3652 �1826 33

Table 4. Continued
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Parameter Initial value Scaling value Rank

ea21 �3974 �1987.2 16

ea23 1 439 719.4 24

ea24 6 983 3491.4 12

ea25 10 758 5379 13

ea3Blow �3974.4 �3974.4 26

ea3Bhigh 6 982.8 6 982.8 31

ea3Hlow �3974.4 �3974.4 28

ea3Hhigh 6 982.8 6 982.8 32

ea4B 0 1 504.2 29

ea4H 0 1504.2 30

Table 5. Continued
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in the corresponding measured response, syi. An appro-

priate value for suk reflects how far themodeler is willing to

allow the particular parameter to move away from its

initial guess, and syi reflects the modeler’s knowledge

about the reproducibility of measurements for the

different responses. Using the proposed scaling, the

limited information in the data is used to estimate

influential parameters whose values are not well known.

Less-influential parameters and parameters whose initial

values are more certain rank lower on the list. Parameters

that rank near the bottom of the list may be kept at their

initial values, if there is insufficient information to

estimate all of the parameters.

In the current work, a value of syi¼ 0.0154 is used for

MWD responses, and syi¼ 0.0143 was used for comonomer

incorporation responses. These scaling values were

determined from pooled variance estimates determined

from three pairs of replicate experiments (see Figure 5a–c).

Scaling factors suk and the corresponding initial guesses for

all of the parameters are shown in Table 5. Note that some

of the initial parameter values in Table 5 are parameter

estimates obtained using the isothermal model.[1] For

these parameters, the corresponding suk values are the

standard deviations of the parameter estimates from the

isothermalmodel estimation. For other parameters that do

not appear in the isothermal model, suk values were

selected based on how far we anticipated that the

parameter could move away from the initial guess before

its value might become physically unreasonable. For

example, the initial value of eK11¼�2828.7 in Table 5

was calculated using data from a different Z-N catalyst

obtained at several temperatures.[8] A value of suk, which is

half of this initial guess, was selected to reflect our

expectation that the final estimate for eK11 could be quite

different from �2 828.7 but should be similar in size. The

objective function for parameter estimation for the non-
Macromol. React. Eng. 2009, 3, 160–177
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isothermal models also uses the syi values to weight the

molecular weight and comonomer incorporation terms:
J ¼
X yMWD � ŷMWD

syMWD

� �2

þ
X yCI � ŷCI

syCI

� �2

(1)
The estimability algorithm was able to rank the

parameters in Table 5 from most estimable to least

estimable. However, singularity problems were encoun-

tered when ranking the final two parameters. This result

suggests that, at very most, 32 parameters could be

simultaneously estimated using the available MWD and

composition data, because estimating all 33 parameters

would lead to severe numerical conditioning problems.

The parameter estimability rankings are shown in the final

column of Table 5. A low rank number indicates a

parameter that should be easy to estimate because of

the large amount of information in the available data

(compared to the uncertainty, suk). A high rank number

indicates a parameter that cannot be readily estimated due

to a lack of parameter influence on the predicted responses

or due to correlation with the effects of parameters that

appear earlier in the ranked list.
Parameter Estimation

The estimability analysis indicates that at most 32

parameters could be estimated without encountering

severe numerical difficulties during parameter estimation.

However, better model predictions may be obtained if

fewer parameters are estimated. As a result, it is important

to determine how many parameters should be estimated

from the ranked list. Kou et al.[4] suggested using a pre-

specified cut-off value for the magnitude of columns in the
DOI: 10.1002/mren.200800052



Parameter Estimation in a Simplified MWD Model for HDPE . . .

Figure 2. Influence of number of parameters estimated in the
model in Table 3 on the cross-validation objective function.

Table 6. Parameter estimates for the 14 most-estimable
parameters from the model in Table 3. Parameter estimates that
are statistically different from zero at the 95% confidence level
are shown in bold. Approximate 95% confidence intervals, based
on linearization, were used to determine whether parameters are
significant.

Rank Parameter Estimate

1 a4B 7.3420

2 a4H 26.9599

3 K15 2.2222� 10�14

4 a1low 2 667.2

5 a1high 544.7

6 eK13 �2 924.1

7 a3Bhigh 2.2246� 10�14

8 a3Hhigh 2.2205� 10�14

9 a24 0.0942

10 eK12 �2 308.8

11 a25 0.0159

12 ea24 2 348.6

13 ea25 1 108.3

14 a23 0.3708
residual sensitivity matrix. When the magnitudes of the

residuals became smaller than this cut-off value, Kou et al.

stopped the ranking procedure and the parameters that

had been ranked were then estimated. Unfortunately, it is

difficult to choose an appropriate cut-off value, making the

number of estimated parameters somewhat arbitrary. An

improved method for determining how many parameters

to estimate is used in this article.

When toomany parameters are estimated using limited

data, the high levels of uncertainty associated with the

parameter estimates result in large variances for themodel

predictions.[9,10] When only a subset of the model

parameters is estimated (while keeping the other para-

meters at their initial guesses), model predictions and

parameter estimates are biased due to the incorrect values

of the fixed parameters.[9] This bias decreases when

additional parameters are estimated. The optimal number

of parameters to estimate balances the trade-off between

variance and bias to produce model predictions with the

lowest mean-squared prediction error.[10] A straightfor-

ward way to examine this trade-off is to use cross-

validation,[11] as described below. Cross-validation tests

the predictive ability of amodel by removing data from the

available data set. Model parameters are then estimated

and used to predict the removed data.

Cross-validation was performed by selecting four key

runs from the complete set of the 31 experimental runs.

These four runs correspond to very different points in the

operating space. Two runs used butene comonomer and

two used hexene. The four points covered a range of

temperatures and hydrogen-to-ethylene ratios. Various

numbers of parameters from the ranked list were then

estimated four times. Each time, data from one of the

selected experiments were left out, and the remaining 30

runs were used to estimate the parameters. The estimated

parameters were then used to predict the responses for

their corresponding left-out run. This procedure was

repeated for each of the four runs selected. The weighted

sum of squared residuals (see Equation 1) was then

calculated and added together for the four left-out runs

(using the corresponding sets of parameter values). This

cross-validation procedure was performed for different

numbers of parameters being estimated, and the resulting

values of this cross-validation objective function are

plotted in Figure 2 versus the number of parameters that

were estimated from the ranked list. A low value of the

objective function indicates good predictive ability of the

model and the parameters. One benefit of the cross-

validation approach is that it provides a measure of how

well the model can predict data that were not used for

estimation. Cross-validation also provides information

about the sensitivity of parameter values to particular

experimental data points. Note that four key runs were

chosen for cross-validation, rather than using all 31 runs,
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because of the heavy computational load required to

estimate the parameters.

The predictive ability of the model tended to improve as

more parameters were estimated, up to approximately 14

parameters. Estimating additional parameters either had

very little influence on the quality of themodel predictions

or resulted in worse predictions. The 14 highest-ranked

parameters were then reestimated using all 31 runs in the

data set, and are reported in Table 6.

The lower-ranked parameters that were not estimated

tend to be activation energy parameters. The temperature

effects in many kinetic rate constants may not be

influential enough over the range of temperatures studied
www.mre-journal.de 169
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Table 7. Reparameterized equations for computing MWD. This model was developed after making simplifying assumptions to reduce the
number of unknown parameters to 25.

dW

d log10 Mw
¼ m1 r2 lnð10Þt21 expð�t1rÞ

� �
þm2 r2 lnð10Þt22 expð�t2rÞ

� �
þm3 r2 lnð10Þt23 expð�t3rÞ

� �
þm4 r2 lnð10Þt24 expð�t4rÞ

� �
þm5 r2 lnð10Þt25 expð�t5rÞ

� �
(7.1)

tj ¼ K1j exp "K1low
1

T
� 1

T0

� �� �
H2½ �
C2½ � þ K4

1

C2½ � for j ¼ 1; 2 OR

tj ¼ K1j exp "K1high
1

T
� 1

T0

� �� �
H2½ �
C2½ � þ K4

1

C2½ � for j ¼ 3; 4; 5

(7.2)

mj ¼
NjP5

j¼1

Nj

(7.3)

N1 ¼ a21 exp "a21
1

T
� 1

T0

� �� �
þ a3Blow exp "a3Blow

1

T
� 1

T0

� �� �
C4½ �
C2½ � þ a3Hlow exp "a3Hlow

1

T
� 1

T0

� �� �
C6½ �
C2½ �

� �

1þ a1lowK12 exp "Klow
1

T
� 1

T0

� �� �
H2½ �

C2½ � þ a4B exp "a4
1

T
� 1

T0

� �� �
C4½ � þ a4H exp "a4

1

T
� 1

T0

� �� �
C6½ �

0
BB@

1
CCA

Y
j¼3;4;5

1þ a1highK1j exp "Khigh
1

T
� 1

T0

� �� �
H2½ �
C2½ �

� �

(7.4)

N2 ¼ 1þ a3Blow exp "a3Blow
1
T � 1

T0

� �� �
C4½ �
C2½ � þ a3Hlow exp "a3Hlow

1
T � 1

T0

� �� �
C6½ �
C2½ �

� �

1þ a1lowK11 exp "Klow
1

T
� 1

T0

� �� �
H2½ �

C2½ � þ a4B exp "a4
1

T
� 1

T0

� �� �
C4½ � þ a4H exp "a4

1

T
� 1

T0

� �� �
C6½ �

0
BB@

1
CCA

Y
j¼3;4;5

1þ a1highK1j exp "Khigh
1

T
� 1

T0

� �� �
H2½ �
C2½ �

� �

(7.5)

N3 ¼ a23 exp "a2high
1
T � 1

T0

� �� �
þ a3Bhigh

C4½ �
C2½ � þ a3Hhigh

C6½ �
C2½ �

� �

Y
j¼1;2

1þ a1lowK1j exp "Klow
1

T
� 1

T0

� �� �
H2½ �

C2½ � þ a4B exp "a4
1

T
� 1

T0

� �� �
C4½ � þ a4H exp "a4

1

T
� 1

T0

� �� �
C6½ �

0
BB@

1
CCA

Y
j¼4;5

1þ a1highK1j exp "Khigh
1

T
� 1

T0

� �� �
H2½ �
C2½ �

� �

(7.6)

N4 ¼ a24 exp "a2high
1

T
� 1

T0

� �� �
þ a3Bhigh

C4½ �
C2½ � þ a3Hhigh

C6½ �
C2½ �

� �

Y
j¼1;2

1þ a1lowK1j exp "Klow
1

T
� 1

T0

� �� �
H2½ �

C2½ � þ a4B exp "a4
1

T
� 1

T0

� �� �
C4½ � þ a4H exp "a4

1

T
� 1

T0

� �� �
C6½ �

0
BB@

1
CCA

Y
j¼3;5

1þ a1highK1j exp "Khigh
1

T
� 1

T0

� �� �
H2½ �
C2½ �

� �

(7.7)

N5 ¼ a25 exp "a2high
1

T
� 1

T0

� �� �
þ a3Bhigh

C4½ �
C2½ � þ a3Hhigh

C6½ �
C2½ �

� �

Y
j¼1;2

1þ a1lowK1j exp "Klow
1

T
� 1

T0

� �� �
H2½ �

C2½ � þ a4B exp "a4
1

T
� 1

T0

� �� �
C4½ � þ a4H exp "a4

1

T
� 1

T0

� �� �
C6½ �

0
BB@

1
CCA

Y
j¼3;4

1þ a1highK1j exp "Khigh
1

T
� 1

T0

� �� �
H2½ �
C2½ �

� �

(7.8)
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(80–115 8C) to allow the estimation of separate activation

energy parameters for individual types of active sites. To

make the best possible use of the data, another round of

model simplification was used. To further reduce the

number of parameters in the model, it was assumed that

sites 1 and 2 have common activation energy parameters,

and that sites 3–5 share a different set of common values.

We also assumed that, since there is little propagation

with comonomers at the high-molecular-weight sites, it is

reasonable to ignore the associated temperature effects (no

activation energy parameter associated with a3Bhigh and

a3Hhigh). These simplifications reduced the number of

model parameters from 33 to 25. The reparameterized

model equations are shown in Table 7.

With the model further simplified, a second round of

estimability analysis was performed. The estimability

rankings, along with the initial parameter estimates and

the scaling values, are shown in Table 8. This time, the

estimability algorithm was able to rank all 25 model

parameters.
Table 8. Estimability rankings for the simplified 25-parameter mode

Parameter Initial value

K11 0.0149

K12 0.0030

K13 0.0012

K14 0.0003

K15 0

K4 9.4� 10�4

a1low 1 325.8

a1high 3 222.2

a21 0.4755

a23 1.9492

a24 0.3370

a25 0.0579

a3Blow 0.4370

a3Bhigh 1.73� 10�9

a3Hlow 0.4370

a3Hhigh 1.73� 10�9

a4B 0.0491

a4H 0.0491

eKlow �2308.8

eKhigh �2924.1

ea21 �3974

ea2high 2 348.6

ea3Blow �3974.4

ea3Hlow �3974.4

ea4 0
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With the new estimability rankings in place, a new

cross-validation plot (similar to Figure 2) was generated

and is shown in Figure 3. This time, the objective function

decreases until 16 parameters have been estimated. The

MWD fits for the four runs used in cross-validation are

shown in Figure 4a–d, and the parameter estimates are

shown in Table 9. TheMWDmodel is able tomatch all four

MWD curves very well. There is little difference between

the final model predictions and the predictions obtained

using the cross-validation parameters, indicating that the

model has good predictive capability for the four selected

runs. The data set used for parameter estimation contains

data from experimental runs that were replicated at three

different sets of operating conditions. Model predictions

and experimental data for these runs are shown in

Figure 5a–c. The small deviations between the model

predictions and the data are similar in size to the

deviations between the measured MWD curves.

Figure 6 shows the behavior of the overall objective

function for parameter estimation as additional para-
l that appears in Table 7.

Scaling value Rank

6.209� 10�3 21

9.0� 10�4 23

5.57� 10�4 13

5.39� 10�4 19

8.8781� 10�3 3

1.3055� 10�4 15

1893.7 4

5 048.4 5

0.2074 18

1.0260 12

0.2042 10

0.0656 11

0.5 17

0.5 6

0.5 20

0.5 8

51.3868 1

51.3868 2

�801.5 16

�1307 7

�1987.2 14

3491.4 9

�3874.4 22

�3974.4 24

1504.2 25
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Figure 3. Influence of number of parameters estimated in the
model in Table 7 on the cross-validation objective function.

Table 9. Parameter estimates of the 16 most-estimable
parameters in the 25-parameter model. Parameter estimates
that are statistically different from zero at the 95% confidence
interval are shown in bold. Approximate 95% confidence inter-
vals, based on linearization, were used to determine whether
parameters are significant.

Rank Parameter Estimate

1 a4B 6.7180

2 a4H 23.4994

3 K15 3.7257� 10�7

4 a1low 2 423.9

5 a1high 426.1679

6 a3Bhigh 4.2991� 10�13

7 eKhigh �3 582.1

8 a3Hhigh 8.2273� 10�13

9 ea2high 566.7239

10 a24 0.0623

11 a25 0.0171

12 a23 0.3434

13 K13 0.0010

14 ea21 �3 385.1

15 K4 8.1760T 10�4

16 eKlow �2 387.0
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meters are estimated from the complete set of 31 runs. This

figure confirms that the fit to the data cannot be improved

significantly by estimating more than 16 parameters. The

parameter estimates in Table 9 are consistent with the

initial guesses and the scaling values from Table 8,

indicating that none of the parameter estimates is

physically or statistically unrealistic.

Unfortunately, comonomer incorporation is not as well

predicted as the MWDs (see Figure 7). This is because the

single comonomer incorporation data point from each run

does not have much weight (compared to the 100 MWD

points for each run) in the parameter-estimation objective

function. The results in Figure 5 and 7may correspond to a

local optimum in the parameter estimation surface. To fix
Figure 4. Predictions of MWD for runs used for cross-validation. The solid line is the measured MWD, the dotted line is the fit with all runs
included in the parameter estimation, and the dashed line is the prediction with this run left out of the parameter estimation. (a) Butene at
90 8C, (b) hexene at 80 8C, (c) butene at 110 8C, (d) hexene at 100 8C.
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Figure 5. Predictions of three pairs of replicate runs. Runs (a) and
(b) were conducted with hexene at 90 8C and run (c) was con-
ducted with hexene at 80 8C. Predictions were made using the
model in Table 7 and the parameter estimates in Table 8 and 9.

Figure 6. Parameter estimation objective function decreases as
more parameters are added.

Figure 7. Comparison of predicted and measured comonomer
incorporation using parameter values in Table 8 and 9.

Figure 8. Comparison of predicted and measured comonomer
incorporation using the final parameter values in Table 10.
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this problem, another round of estimability analysis and

parameter estimation was needed. In the first step, only

the comonomer incorporation data were included and no

MWD information was used in the estimability ranking or

parameter estimation. Using the comonomer incorpora-

tion sensitivity coefficients, the eight most estimable

parameters related directly to comonomer incorporation

predictions were determined (i.e., a3Bhigh, a3Hhigh, a4B, a4H,

ea3Blow, ea3Hlow, a3Blow, a3Hlow). These eight parameters

were reestimated starting from the values in Table 8 and 9

to obtain an improved fit of the comonomer incorporation

data. Next, the 16 parameters in Table 9 were reestimated

to fit both the MWD and comonomer data, using the new

values of the eight comonomer parameters as starting

values (and fixed values). Parameters were successively

reestimated until further improvements in the objective

function and comonomer incorporation fit were not

observed. The new parameter values drastically improved
Table 10. Final parameter values. The twenty bold values corre-
spond to parameters that were estimated using the experimen-
tal data.

Parameter Estimate

K11 0.0149

K12 0.0030

K13 0.0011

K14 0.0003

K15 4.0T 10�13

K4 7.9T 10�4

a1low 2 431.6

a1high 390.7

a21 0.4755

a23 0.3419

a24 0.0671

a25 0.0154

a3Blow 0.0378

a3Bhigh 0.0154

a3Hlow 0.3065

a3Hhigh 4.44T 10�9

a4B 10.63

a4H 28.84

eKlow �3 095

eKhigh �4 070

ea21 �2 476

ea2high �259.5

ea3Blow �4 377

ea3Hlow 495.6

ea4 0
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the comonomer incorporation fit, as can be seen in

Figure 8, with a small improvement in the MWD fits, as

well (not shown). The complete set of final parameter

estimates is provided in Table 10. The overall objective

function, in Equation (1) was reduced from 10070 to 9 457

when the parameters in Table 10 were used instead of

those in Table 8 and 9.
Conclusion

A simplified model has been developed to predict MWDs

from ethylene/hexene and ethylene/butene copolymer-

ization using a Z-N catalyst. Estimability analysis and

cross-validation were shown to be useful tools for deciding

which parameters should be estimated using limited

industrial data, and for guiding decisions about model

simplification. Twenty of 25 parameters were estimated in

the simplified model, which provides good predictions of

MWD curves and comonomer incorporation. The small

mismatch between model predictions and experimental

MWD results are similar in magnitude to deviations

between MWD curves from replicate experimental runs.

The parameter estimates from this study will be useful for

designing experiments aimed at further model improve-

ment, and the parameter estimation and model simplifi-

cation strategy can be applied to other catalytic poly-

merization models.
Nomenclature
[H2] g
as phase hydrogen concentration (bar)
[C2] g
as phase ethylene concentration (bar)
[C6] g
as phase hexene concentration (bar)
[I] g
as phase impurities concentration (bar)
a1low l
umped parameter, ratio relating chain transfer

to hydrogen to reinitiation with ethylene at

sites 1 and 2
a1high l
umped parameter, ratio relating chain transfer

to hydrogen to reinitiation with ethylene at

sites 3–5
a2j l
umped parameter, ratio relating propagation

with ethylene at site j to propagation with

ethylene at site 2
a3Blow l
umped parameter, ratio relating propagation

with butene at sites 1 and 2 to propagation with

ethylene at site 2
a3Bhigh l
umped parameter, ratio relating propagation

with butene at sites 3–5 to propagation with

ethylene at site 2
a3Hlow l
umped parameter, ratio relating propagation

with hexene at sites 1 and 2 to propagationwith

ethylene at site 2
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a3Hhigh lu
Macromol. Re

� 2009 WILE
mped parameter, ratio relating propagation

with hexene at sites 3–5 to propagation with

ethylene at site 2
a4B lu
mped parameter, ratio relating reinitiation

with butene to reinitiation with ethylene at

sites 1 and 2
a4H lu
mped parameter, ratio relating reinitiation

with hexene to reinitiation with ethylene at

sites 1 and 2
bj r
atio of potential sites of type j to potential sites

of type 2
eKj lu
mped parameter, activation energies relating

propagation with ethylene to chain transfer to

hydrogen at site j (K)
ea2j lu
mped parameter, activation energies relating

propagation with ethylene at site j to propaga-

tion with ethylene site 2 (K)
ea3Blow lu
mped parameter, activation energies relating

propagation with butene at sites 1 and 2 to

propagation with ethylene site 2 (K)
ea3Bhigh lu
mped parameter, activation energies relating

propagation with butene at sites 3–5 to

propagation with ethylene site 2 (K)
ea3Hlow lu
mped parameter, activation energies relating

propagation with hexene at sites 1 and 2 to

propagation with ethylene site 2 (K)
ea3Hhigh lu
mped parameter, activation energies relating

propagation with hexene at sites 3–5 to

propagation with ethylene site 2 (K)
ea4B lu
mped parameter, activation energies relating

reinitiation with ethylene to reinitiation with

butene at sites 1 and 2 (K)
ea4B lu
mped parameter, activation energies relating

reinitiation with ethylene to reinitiation with

hexene at sites 1 and 2 (K)
EHtj a
ctivation energy for chain transfer to hydrogen

at site j (J �mol�1)
EEpj a
ctivation energy for propagationwith ethylene

at site j (J �mol�1)
EButpj a
ctivation energy for propagation with butene

at site j (J �mol�1)
EHex
pj a
ctivation energy for propagation with hexene

at site j (J �mol�1)
EEij a
ctivation energy for reinitiation with ethylene

at site j (J �mol�1)
EButij a
ctivation energy for reinitiation with butene at

site j (J �mol�1)
EHex
ij a
ctivation energy for reinitiationwith hexene at

site j (J �mol�1)
fBj b
utene mole fraction incorporated by site j
fHj h
exene mole fraction incorporated by site j
J o
bjective function value
K1j lu
mpedparameter, ratio relating chain transfer to

hydrogen to propagation with ethylene at site j
act. Eng. 2009, 3, 160–177
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K4 l
umped parameter, ratio relating spontaneous

chain transfer and chain transfer to impurities

to propagation with ethylene at all sites (bars)
kEij0 p
re-exponential kinetic rate constant for reini-

tiation with ethylene at site j (bars�1 � s�1)
kButij0 p
re-exponential kinetic rate constant for reini-

tiation with butene at site j (bars�1 � s�1)
kHex
ij0 p
re-exponential kinetic rate constant for reini-

tiation with hexene at site j (bars�1 � s�1)
kEpj0 p
re-exponential kinetic rate constant for pro-

pagation with ethylene at site j (bars�1 � s�1)
kButpj0 p
re-exponential kinetic rate constant for pro-

pagation with butene at site j (bars�1 � s�1)
kHex
pj0 p
re-exponential kinetic rate constant for pro-

pagation with hexene at site j (bars�1 � s�1)
kHtj0 p
re-exponential kinetic rate constant for chain

transfer to hydrogen at site j bars�1 � s�1
kbtj k
inetic rate constant for spontaneous chain

transfer at site j (s�1)
kItj k
inetic rate constant for chain transfer to

impurities at site j (bars�1 � s�1)
mj m
ass fraction of polymer produced at site j
mB m
ass fraction of butene incorporation
mH m
ass fraction of hexene incorporation
Nj m
ass fraction model numerator for site j
R g
as constant (J �mol�1 �K�1)
r c
hain length
suk p
arameter uncertainty in estimability analysis

scaling
syi r
esponse uncertainty in estimability analysis

scaling
tj i
nverse number-average molecular weight of

site j
uk p
arameter k in estimability analysis
T r
eactor temperature (K)
T0 r
eference temperature, T0¼ 363.15 K (K)
yi r
esponse i in estimability analysis
Yj,n g
rowing polymer chain of length n at site of

type j
YjD t
emporarily dormant site of type j
Z s
ensitivity matrix in estimability analysis
ẐK l
east-squares prediction of Z in estimability

analysis iteration K
Appendix: Estimability Analysis Algorithm
for Parameter Ranking

Estimability analysis is a tool for determining which

parameters should be estimated when complex models

contain too many parameters to be estimated using the

available data. The estimability analysis algorithm used in

this research is a simple and convenient tool, which was

first proposed by Yao et al.[6] and then further developed by
www.mre-journal.de 175
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Kou et al.[4,5] who studied olefin polymerization models

with large numbers of parameters. Alternative tools, such

as the approach of Li et al.,[12] are less convenient to use. Li’s

method uses two separate measures, one that tests for

parameter influence (magnitude of sensitivity coefficients)

and a second that tests for linear independence. There is no

easy way to combine the results from the twomeasures to

decide which parameters should be estimated using the

available data. Recently, Lund and Foss[7] proposed a

method that produces identical results to the method of

Kou et al., but Lund’s method is more computationally

complex. Chu and Hahn[13] have also suggested using an

orthogonalization method to determine which parameters

cannot be estimated together. Unfortunately, theirmethod

for parameter ranking uses a computationally intensive

genetic algorithm to select parameters that should be

estimated, using information from their orthogonalization

results.

Estimability analysis uses sensitivity coefficients, which

are the first-order partial derivatives of the response

variables, yi, with respect to the parameters, uk. A

sensitivity matrix is constructed using these parametric

sensitivity coefficients. Each column in the matrix

contains partial derivatives with respect to a particular

parameter, and each row corresponds to partial derivatives

for a specific predicted response:

Z ¼

@y1
@u1

� � � @y1
@uk

..

. . .
. ..

.

@yi
@u1

� � � @yi
@uk

2
66664

3
77775

The number of columns in Z is equal to the number of

parameters in the model and the number of rows is equal

to the total number of response values that will be used for

parameter estimation. For example, the model in Table 3

has 33 unknown parameters and the data set available to

estimate these parameters contains 31 MWD curves (with

100 points each) and 31 comonomer incorporation

measurements. The resulting sensitivity matrix has

dimensions of 3 131 by 33. The sensitivity coefficients in

Z should be properly scaled so that they are dimensionally

consistent and can be meaningfully compared. To

accomplish this objective, we propose that each coefficient

should be multiplied by the uncertainty in the correspond-

ing initial parameter guess, suk, and divided by the

uncertainty in the particular measured response, syi,

resulting in scaled sensitivity coefficients of the form:

@yi
@uk

suk
syi

The relative influence of the various parameters can be

found by examining the magnitudes of the entries in the

columns of the sensitivity matrix. Parameters with large
Macromol. React. Eng. 2009, 3, 160–177
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influence will correspond to columns with large (positive

or negative) scaled sensitivity coefficients. To rank the

parameters from most to least estimable, the following

algorithm, which takes into account both the influence of

the parameters and the correlations between their effects,

is used:
1. C
alculate the magnitude (sum of squares) of each

column of the scaled sensitivity matrix, Z. Although

analytical derivatives are used in the current research

project, numerical derivatives could also be used.
2. S
elect the column with the largest magnitude. This

column corresponds to the most estimable parameter.
3. P
ut the selected column into matrix XK. When the first

parameter is selected, K¼ 1, and thematrix will contain

only one column. When subsequent parameters are

selected, the XK matrix will contain K columns.
4. C
alculate ẐK , the least-squares prediction of the scaled

sensitivity matrix, using the information in XK

ẐK ¼ XK XT
KXK

� ��1
XT
KZ
5. C
alculate the residual matrix RK

RK ¼ Z � ẐK
6. C
alculate the magnitude of each column of RK. The

column with the largest magnitude corresponds to the

next most estimable parameter.
7. S
elect the corresponding column in Z and augment the

matrix XK by including the new column. This augmen-

ted matrix is XKþ1.
8. A
dvance the iteration counter by 1 and repeat steps 4–7

until either all the parameters are ranked or singularity

problems are encountered when inverting XT
KXK .
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