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a b s t r a c t

New filtering and spectral interpretations of Singular Spectrum Analysis (SSA) are provided. It is shown
that the variables reconstructed from diagonal averaging of reduced-rank approximations to the trajec-
tory matrix can be obtained from a noncausal convolution filter with zero-phase characteristics. The re-
constructed variables are readily constructed using a two-pass filtering algorithm that is well known in
the signal processing literature. When the number of rows in the trajectory matrix is much larger than
number of columns, many results reported in the signal processing literature can be used to derive the
properties of the resulting filters and their spectra. New features of the reconstructed series are revealed
using these results. Two examples are used to illustrate the results derived in this paper.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Singular Spectrum Analysis (SSA) has proven to be a flexible
method for the analysis of time-series data. Applications are
reported in diverse areas such as climate change and geophysical
phenomena [1–3], mineral processing [4] and telecommunication
applications [5,6]. The basic SSA method has been combined with
the maximum entropy method (MEM) [7] and with multi-taper
methods [8] to enhance the spectral analysis of data. Extensions to
cope with missing data [9] and multi-scale applications have also
been developed [10].
The basic elements of SSA were first reported in [11,12].

Widespread use of SSA followed a series of papers by Vautard
and Ghil [2] and Vautard et al. [3]. The monograph by Golyandina
et al. [13] describes the basic algorithmplus a number of variations.
A recent overview is given in [14].
The purpose of this paper is to give a number of interpretations

of SSA froma signal processing perspective by addressing issues re-
lated to filtering interpretations, spectrumevaluation and recovery
of harmonic signals. In particular, in the case where the trajectory
matrix has many more rows than columns, the eigenvalues and
eigenvectors are nearly identical to those of an associated symmet-
ric Toeplitz matrix. The eigenvalues and eigenvectors of this latter
matrix are highly structured [15–17]. These structured properties
lead to a number of interesting filtering interpretations. Addition-
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ally, we note that the reconstruction phase in SSA can be inter-
preted as a forward and a reverse filtering of the original data. This
provides for a number of additional interpretations for the filtered
series and their spectra.
The paper is organized as follows. In the next section we state

the basic SSA algorithm and some variations. This is followed
by filtering and spectral interpretations of the SSA algorithm.
These interpretations make extensive use of symmetry properties
of the eigenfilters that are used in the filtering. These in turn
are derived from symmetry properties of the eigenvectors of the
trajectorymatrix. Two examples are then analyzed to illustrate the
theoretical results.

2. Basic SSA and some variations

2.1. Basic SSA algorithm

The basic SSA algorithm consists of the following steps [2,3,12].

1. Choose an embedded dimension K and define L = N + 1 − K ,
where N is the number of observations in the time series.

2. Form the L × K Hankel matrix A using mean-corrected data,
yt , t = 1, 2, . . . ,N .

A = [y1, y2, y3, . . . , yK ]

=


y1 y2 y3 · · · · · · yK
y2 y3 y4 · · · · · · yK+1
y3 y4 y5 · · · · · · yK+2
...

...
...

...
yL yL+1 yL+2 · · · · · · yK+L−1


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where yi = (yi, yi+1, . . . , yi+L−1)T . This matrix A is often re-
ferred to as the trajectory matrix. In most applications of SSA,
L > K [2,13].

3. Determine the eigenvalues and eigenvectors ofATA. Denote the
eigenvalues by λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0. For each eigenvalue
λi there is a corresponding eigenvector vi.

(ATA)vi = λivi. (1)

4. Define K new series,wi = Avi, i = 1, 2, . . . , K . Each series is of
length L. Once the new series are constructed, the analysis then
focuses on the new series, which are sometimes referred to as
the latent variables. The individual series may be analyzed, or
subsets may be grouped together.
The utility of the method is derived from the following proper-
ties and interpretations of the eigenvalue analysis:
(a) The eigenvectors vi are orthonormal, i.e., vTi vj = 0 (i 6= j)
and vTi vi = 1.

(b) The latent variableswi are orthogonal, and
‖wi‖2 = wTi wi = (Avi)

TAvi = vTi (A
TA)vi

= vTi λivi = λi. (2)
(c) Consequently,

K∑
i=1

wTi wi =
K∑
i=1

wTi
K∑
i=1

wi =
K∑
i=1

λi. (3)

Often, the interesting features of a time series are found by an-
alyzing the first few latent variables. A number of methods have
been proposed to choose the number of latent variables for analy-
sis. Most often, the construction of a scree plot [18], which is a plot
of λi versus i, will indicate a knee or bend. This can be used to select
the number of latent variables. Othermethods have been proposed
when the break points are not clear [19].
Scree plots are also useful for identifying harmonics in the data.

As discussed in [2,12,14], if N and L are large enough, each har-
monic results in two eigenvalues that are closely paired for a purely
harmonic series. A harmonic component may produce a periodic
component in the autocorrelation and partial autocorrelation func-
tion. However, the number of periodic components cannot be eas-
ily extracted from these functions. In addition, a slowly decreasing
sequence of eigenvalues can be produced by a pure noise series
[13,14]. These two observations suggest that a break or knee in the
scree plot can be used to separate the signals that arise from har-
monics and signals from noise or aperiodic components [13].
The eigenvalues of ATA are most often calculated by undertak-

ing a singular value decomposition (SVD) of A. The right singular
vectors of A are identical with the eigenvectors of ATA and the
eigenvalues of this latter matrix are the squares of the correspond-
ing singular values of A [13].

2.2. Variation: Toeplitz approximation to ATA

ATA is symmetric and positive semi-definite. It can be written
as

ATA =


yT1 y1 yT1 y2 · · · yT1 yK
yT2 y1 yT2 y2 · · · yT2 yK
...

...
...

yTKy1 yTKy2 · · · yTKyK

 .
In situations when L� K , we have
1
L
yT1 y1 '

1
L
yT2 y2 '

1
L
yT3 y3 ' · · · '

1
L
yTKyK '

1
N

N∑
t=1

y2t = c0

1
L
yT1 y2 '

1
L
yT2 y3 ' · · · '

1
L
yTK−1yK '

1
N − 1

N−1∑
t=1

ytyt−1 = c1

...

1
L
yT1 yK =

1
L

L∑
t=1

ytyt−(K−1) = cK−1

where ci is the sample autocovariance at lag i (we have previously
assumed that the data have been mean corrected). Consequently

ATA
L
' C =


c0 c1 · · · cK−1
c1 c0 · · · cK−2
...

...
...

cK−1 cK−2 · · · c0


where C is the sample covariance matrix of the observations. The
sample autocorrelation matrix R = C/c0 is often used instead of C
for analysis. This is appropriate when the data have been centered
and normalized [12,20].

2.3. Variation: Hankel approximation and diagonal averaging [13]

A singular value decomposition of the matrix is undertaken

A =
µ∑
i=1

Xi =
µ∑
i=1

√
λiuivTi (4)

where µ = min(L, K), λi and vi are the eigenvalues and eigenvec-
tors of ATA as described in Eq. (1), and ui are the eigenvectors of
AAT , i.e., the solution to [21]

(AAT )ui = λiui. (5)
The orthogonal vectors ui and vi are related by

Avi =
√
λiui, i = 1, 2, . . . , µ (6)

where the singular values of A are
√
λi, i.e., the square root of the

eigenvalues of ATA. Clearly, ui = wi/
√
λi.

Each of the Xi in Eq. (4) is of rank 1. A new series xi of length
N is reconstructed by averaging each of the N anti-diagonals in Xi.
Attention is then focused on the new series xi, or groupings of these
series. Guidelines for grouping of variables are typically based on
the clustering and separation of the eigenvalues. A ‘separability
index’ has been proposed in [14] to assist with grouping.
This diagonal averaging is computationally equivalent to calcu-

lating xi using [22]

xi = D−1Wivi (7)
where

Wi =



w1 0 · · · · · · · · · 0
w2 w1 0 · · · · · · 0
w3 w2 w1 0 · · · 0
...

...
...

...
wK−1 · · · w3 w2 w1 0
wK · · · · · · w3 w2 w1
wK+1 · · · · · · · · · w3 w2
...

...
wL−1 wL−2 · · · · · · · · · wL−K
wL wL−1 wL−2 · · · · · · wL−K+1
0 wL wL−1 wL−2 · · · wL−K+2
...

...
...

...
0 · · · 0 wL wL−1 wL−2
0 · · · · · · 0 wL wL−1
0 · · · · · · · · · 0 wL



(8)
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and D is an N × N diagonal matrix, whose diagonal elements are(
1 2 · · · µ− 1 µ · · · µ µ− 1 · · · 2 1

)
(9)

andwi =
(
w1 w2 · · · wL

)T
= Avi, and vi is one of the eigen-

vectors. To simplify the nomenclature, double subscripting on wi
has been avoided. It is understood that the elements of this vector
depend upon the specific eigenvector used in the reconstruction.
Recall that N = L + K − 1 and µ = min(L, K) = K in most

SSA applications. Then there are N−2(K −1) = 2L−N ‘complete’
rowswith diagonal elementsµ inD. ThematrixWi is of dimension
N × K . The first and last K − 1 rows are ‘incomplete’, which leaves
N − 2(K − 1) ‘complete’ rows.
The latent variableswi are orthogonal, and have squared norm

‖wi‖22 = λi. The squared norm of a reconstructed series using
diagonal averaging is

‖xi‖22 = ‖D
−1Wivi‖22

≤ ‖D−1‖22 · trace(W
T
i Wi)

= K‖D−1‖22 · ‖wi‖
2
2

= Kλi‖D−1‖22

=
Kλi

2(1+ 1/4+ 1/9+ · · · 1/(K − 1)2)+ (2L− N)/K 2

'
K

π2/3+ (2L− N)/K 2
λi, L� K (10)

and∥∥∥∥∥ d∑
i=1

xi

∥∥∥∥∥
2

2

6=

d∑
i=1

‖xi‖22. (11)

Calculations indicate that the upper bound may be quite conser-
vative. The reconstructed series xi are not orthogonal making it
impossible to calculate the variance of grouped variables from the
variance of the individual reconstructed series.
The use of reduced-rank approximations to assist in the ex-

traction of harmonic signals from additive noise has been consid-
ered extensively in the signal processing literature [23–25]. The
trajectory matrix has a central role in these algorithms. Extensive
research indicates that extraction of these signals is considerably
enhanced when the trajectory matrix is replaced by a structured
low-rank approximation [26,27]. The SVD leads to an unstructured
approximation, because the Xi are not Hankel. A structured ap-
proximation is obtained when the trajectory matrix is calculated
using the reconstructed series (or groupings of variables). While
the SVD does not preserve the Hankel structure, the Hankel matrix
constructed from the reconstructed series does not preserve the
rank property. Cadzow [28] developed a simple iterative algorithm
to preserve both the rank and Hankel structure. He has shown that
this iteration will converge to reduced-rank approximation that
has the Hankel structure for certain classes of signals including si-
nusoids and damped sinusoids corrupted by white noise. The re-
construction of the xi corresponds to one iteration of Cadzow’s
algorithm. Other approaches for obtaining reduced-rank approx-
imations with appropriate structure involve the use of structured
total least squares [29–31]. Thesemethods are computationally in-
tense, requiring the use of a nonlinear optimizer in high dimension.

3. Filtering interpretation of SSA

Before discussing filtering interpretations, we state a number of
definitions and properties.

Definition 1. A columnvector c of length n is symmetric if c equals
the vector obtained by reversing the rows of c , i.e., ci = cn+1−i,
Table 1
Eigenvector patterns for persymmetric matrices. J is the [K/2] × [K/2] exchange
matrix.

K Symmetric eigenvector Skew-symmetric eigenvector

Odd
(
αTi J α0 αTi

)T (
−βTi J 0 βTi

)T
Even

(
αTi J αTi

)T (
−βTi J βTi

)T
i = 1, 2, . . . , n. Mathematically, c is symmetric, if Jc = c , where J
is a n × nmatrix with ones on the main anti-diagonal. J is known
as the exchange matrix.
A vector c is skew-symmetric if the vector obtained by reversing

the rows of c equals−c , i.e., ci = −cn+1−i, i = 1, 2, . . . , n. A skew-
symmetric vector satisfies Jc = −c .

Definition 2. An n× nmatrix X is persymmetric if it is symmetric
about both its main diagonal and main anti-diagonal. A symmetric
Toeplitz matrix is persymmetric.

Property 1. If a persymmetricmatrix has K distinct eigenvalues, then
there are [(K + 1)/2] symmetric eigenvectors, and [K/2] skew-
symmetric eigenvectors, where [x] denotes the integer part of x
[15–17]. The eigenvectors appear in the pattern shown in Table 1.

Property 2. The eigenvectors of a persymmetric matrix X can be
computed from matrices of lower dimension [15,16]. For K even, X
can be written as

X =
(
X11 JX21J
X21 JX11J

)
(12)

where X11 and X21 are [K/2] × [K/2] and X T11 = X11,X T21 = JX21J .
[K/2] eigenvalues pi, and associated symmetric eigenvectors α̃i, are
obtained from the eigenvalue problem

(X11 + JX21)α̃i = piα̃i (13)

αi in Table 1 is given by αi =
1
√
2
α̃i and i = 1, 2, . . . , [K/2].

The remaining [K/2] skew-symmetric eigenvectors β̃i, and corre-
sponding eigenvalues qi, are determined from the eigenvalue problem

(X11 − JX21)β̃i = qiβ̃i (14)

βi in Table 1 is obtained from βi =
1
√
2
β̃i and again i = 1, 2, . . . ,

[K/2].
The eigenvectors have considerable structures. This structure will be
exploited in Section 3.2. Expressions for K odd can be found in [15].

Definition 3. Let b(x) be a polynomial of the form b(x) =
∑n
k=1

bkxk−1. b(x) is a palindromic polynomial if bk = bn−k+1, k = 1, 2,
. . . , n. b(x) is an antipalindromic polynomial if bk = −bn−k+1, k =
1, 2, . . . , n [32].

Definition 4. For a polynomial b(x) with real coefficients, the re-
ciprocal polynomial of b(x) =

∑n
k=1 bkx

k−1 is obtained by revers-
ing the coefficients, i.e., b̃(x) =

∑n
k=1 bn−k+1x

k−1.

Definition 5. An eigenfilter is a polynomial formed filter whose
polynomial coefficients are obtained from an eigenvector. Denot-
ing an eigenvector by v the associated eigenfilter is v(z−1) =∑K
k=1 vkz

−(k−1), where z−1 is interpreted as the backshift operator,
i.e., z−1yt = yt−1.

Property 3. The eigenfilters constructed from a persymmetric matrix
are either palindromic polynomials or antipalindromic polynomials.
This follows immediately from the symmetric and skew-symme-
tric properties of the eigenvectors of symmetric Toeplitz matrices
(Property 2).
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Table 2
Distribution of roots at z = ±1 for eigenfilters of a symmetric Toeplitz matrix.

Type Order (K − 1) Root at z−1 = 1 Root at z−1 = −1

Antipalindrome Odd 3 –
Even 3 3

Palindrome Odd – 3

Even – –

Property 4. The roots of the eigenfilters constructed from a per-
symmetric matrix have unit magnitude, or they appear in reciprocal
pairs [17,32].

Property 5. The distribution of roots at z = ±1 of the eigenfilt-
ers constructed from a symmetric Toeplitz matrix is given in Table 2.
These results are established by substituting z = ±1 into those
palindromic and antipalindromic polynomials. It is known that an an-
tipalindromic polynomial always has an odd number of roots located
at z−1 = 1 [32].

Property 6. When the eigenvalues of a symmetric Toeplitz matrix
are unique, the roots of the eigenfilter associated with the mini-
mum/maximum eigenvalue all lie on the unit circle. For the other
eigenfilters, this property may or may not be satisfied [17,33,34].

3.1. Filtering interpretation of latent variables

The latent variablewi is readily interpreted as a filtered value of
the original variables. To simplify the notation, let v be one of the
eigenvectors and w be the corresponding filtered value instead of
vi andwi. Then, the tth element ofw can be written as

wt =

K∑
m=1

vmyt+m−1, t = 1, 2, . . . , L. (15)

Alternatively, it can be written in the form

wt =

K∑
m=1

ṽmyt+K−m, t = 1, 2, . . . , L

where the coefficients ṽm are obtained by simply reversing the
order of the coefficients vm. This can be expressed mathematically
as ṽ = Jv, where J is again a K ×K exchange matrix (Definition 1).

3.2. Filtering interpretations using the Toeplitz approximation

Let the eigenvectors be obtained from the Toeplitz approxima-
tion to ATA, i.e., LC . Based on the definitions, the covariance ma-
trix C is a symmetric Toeplitz matrix and is persymmetric. For the
moment, let K be odd. From Property 1, the filtered values for the
symmetric eigenvectors can be written as
wt = α0yt+[K/2]

+

[K/2]∑
m=1

αm(yt+[K/2]+m + yt+[K/2]−m), t = 1, 2, . . . , L. (16)

The filtered values using the skew-symmetric eigenvectors are
calculated as

wt =

[K/2]∑
m=1

βm(yt+[K/2]+m − yt+[K/2]−m), t = 1, 2, . . . , L (17)

w can be interpreted as an aligned or time-shifted value, which
consists of either a weighted average of [K/2] observed values
adjacent to yt+[K/2] in the case of a symmetric eigenvector, or as
a weighted difference for a skew-symmetric eigenvector. When
plotting yt and wt , it is imperative to properly align the original
data by aligning yt+[K/2] withwt .
The filters in Eqs. (16) and (17) are recognized as noncausal

Finite Impulse Response (FIR) filters, also called noncausal or non-
recursive filters [35,36]. Eq. (16) describes a zero-phase filter.
While the filter may attenuate or amplify the data, it introduces no
phase shift in the filtered values. If a series is described by purely
harmonic components, these will appear at the same time point in
the filtered data as in the original data. Eq. (17) describes a differ-
entiating filter. This filter introduces a phase lag of±π radians. In
a series with purely harmonic components, the filtered series will
either lead or lag the original series. There are many classical de-
sign techniques for zero-phase filters that act as either averaging
filters or differentiating filters [36].
The relationship between the even and odd filters can be ex-

panded by using the alternate calculationmethod for the symmet-
ric and skew-symmetric eigenvectors that follows fromProperty 2.
When L � K , the symmetric eigenvectors, and corresponding
eigenvalues, can be calculated from

C11 + JC21 '
2
L
AT
1A1 (18)

where A1 is the L× ([K/2] + 1)matrix (Eq. (19) given in Box I).
The skew-symmetric eigenvectors are obtained by replacing

the sum of the variables by their differences in Eq. (19) (see Eq.
(20) given in Box II).
For an even K , the similar patterns can be obtained.

3.3. Filtering interpretation of reconstructed series

From Eqs. (7) and (8), we can show that

xt =
1
K

(
yt +

K−1∑
m=1

ζm(yt−m + yt+m)

)
,

t = K , K + 1, . . . ,N − K + 1. (21)

The filter coefficients are recognized as v◦ṽ
K , where ◦ denotes con-

volution and ṽ is again obtained by reversing the order of the co-
efficients of v.

ζ1 = v1v2 + v2v3 + · · · + vK−2vK−1 + vK−1vK

ζ2 = v1v3 + v2v4 + · · · + vK−2vK

...

ζK−1 = v1vK . (22)

For the designated values of t, xt is obtained by weighting yt
and (K − 1) values of yt±m on either side of yt . The weights are
symmetric. For values of t outside of the indicated range, we can
construct a filtering interpretation as well. However, edge effects
or end effects are observed as the filter coefficients are no longer
symmetric.
Eq. (21) is recognized as a noncausal FIR filter, sometimes

referred to as an noncausal or non-recursive filter [36]. Since the
filter coefficients are symmetric, this is a zero-phase filter as well.
It is known that a zero-phase a-casual filter can be obtained by
a two-step filtering algorithm [35]. First, filter the data yt , t =
1, 2, . . . ,N with the FIR filter v(z−1) to produce the series w̃t .
Second, filter the series w̃t using the FIR filter ṽ(z−1), where ṽ = Jv.
This is equivalent to reversing the order of w̃t and filtering with ṽ,
and then reversing the order of the resulting series. In both cases
the filtering algorithm uses yt = 0 when t ≤ 0 and w̃t = 0 when
t > N . Once the double-filtered series is obtained, it is multiplied
by the diagonal weighting matrix D. A very close approximation to
any of the individuals via rank-1 approximations, xi, is obtained
by using the MATLAB r© command filtfilt(v, 1, y) and then
multiplying the result by 1

K . Except for a short transient at the
beginning and at the end of the reconstructed series, the results
coincide with those obtained by diagonal averaging. There are
other choices for initial conditions [35] that may be advantageous
to reduce edge effect transients. However, due to the length of
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9)
A1 =

(
1
2
(y1 + yK )

1
2
(y2 + yK−1) · · ·

1
2

(
y[ K
2

] + y[ K
2

]
+2

)
y[ K
2

]
+1

)
. (1

Box I.
0)
A2 =

(
1
2
(y1 − yK )

1
2
(y2 − yK−1) · · ·

1
2

(
y[ K
2

] − y[ K
2

]
+2

)
0
)
. (2

Box II.
series and smallK value typically encountered in SSA analysis, edge
effects are most often small.
The results in this section apply only to signals reconstructed

from rank-1 approximations, say, Xi. The grouping of several rank-
1 reconstructions before averaging is equivalent to calculating the
individual averaging operators and then grouping the resulting re-
constructions. Consequently, if a rank-p approximation is desired,
then p of these filters are arranged in a parallel configuration and
the results are summed [22]. A similar idea was also developed
in [37].

4. Spectral interpretation of SSA

4.1. Spectral interpretation of latent variables

The spectrum of the filtered series in Eq. (15) is given by

Sw(f ) ' |v(e−j2π f )|2 · S(f ) (23)

where f is the normalized frequency, 0 ≤ f ≤ 0.5, S(f ) is the
spectrum of yt , and | · | denotes the magnitude of the quantity ‘·’.
The approximation arises from the assumption that the spectrum
of yt , t = 1, 2, . . . ,N , is the same as the spectrum of yt , t =
K , K + 1, . . . ,N , i.e., edge or end effects have been neglected.

4.2. Spectral interpretations using the Toeplitz approximation

The interesting spectral features of the filtered signals arise
from the structured nature of the eigenfilters.
Using the Toeplitz approximation, the eigenfilters are either

palindromic or antipalindromic. Any eigenfilter v(z−1) can be fac-
torized as [32]

v(z−1) = c(z−1 − 1)k1(z−1 + 1)k2
k3∏
i=1

(z−2 − 2 cos(ωi)z−1 + 1)

×

k4∏
i=1

e4(ζi, z−1)
k5∏
i=1

e5(τi, z−1). (24)

The term (z−2 − 2 cos(ωi)z−1 + 1) accounts for the complex roots
(except±1) of unit magnitude, e4(·) accounts for all real roots ex-
cept those at ±1, and e5(·) accounts for the complex roots, which
are neither purely real nor purely imaginary. {c, ζi, ωi} ∈ R, {τi} ∈
C, and K = k1 + k2 + 2k3 + 2k4 + 4k5.
The limiting cases for the spectrum of the filtered signal w, at

f = 0 and f = 0.5, are

lim
f→0
Sw(f ) ' lim

f→0
|v(e−j2π f )|2 · S(f )

=

∣∣∣∣∣c0k12k2
k3∏
i=1

2(1− cos(ωi))
k4∏
i=1

e4

× (∆i, 1)
k5∏
i=1

e5(τi, 1)

∣∣∣∣∣
2

· S(0)

= 0, k1 > 0 (25)
Table 3
The frequency characteristics for eigenfilters of Toeplitz matrix.

Type Order (K − 1) limf→0 |v(e−j2π f )|2 limf→0.5 |v(e−j2π f )|2

Antipalindrome Odd 0 –
Even 0 0

Palindrome Odd – 0
Even – –

lim
f→0.5

Sw(f ) ' lim
f→0.5
|v(e−j2π f )|2 · S(f )

=

∣∣∣∣∣c(−2)k10k2
k3∏
i=1

2(1+ cos(ωi))
k4∏
i=1

e4

× (∆i,−1)
k5∏
i=1

e5(τi,−1)

∣∣∣∣∣
2

· S(0.5)

= 0, k2 > 0. (26)
Using the results in Property 5 and Table 2, the low and high

frequency characteristics of the eigenfilters are shown in Table 3.
The frequency characteristics are much different from typical dig-
ital filters, and are more reminiscent of the filtering characteristics
of Slepian functions [38,39].
When v(z−1) corresponds to theminimum ormaximum eigen-

value, all roots are on the unit circle [17,33]. Consequently,
|v(e−2jπ f )| will be zero at most (K − 1) values of f in the inter-
val 0 ≤ f ≤ 0.5, resulting in complete attenuation of Sw(f ) at
these frequencies. We also note that an antipalindromic eigenfil-
ter can always be written as v(z−1) = (z−1 − 1)k1v(z−1), where
k1 is odd and v(z−1) is a palindromic eigenfilter [32]. Thus, an an-
tipalindromic filter is always equivalent to palindromic filtering of
the differenced variable (z−1 − 1)k1yt .

4.3. Spectral interpretation of the reconstructed series

As shown in Section 3, a series produced by the diagonal-
averaging approach is fundamentally different from the latent vari-
able. The spectral characteristic of a new reconstructed series x
follows immediately from Eq. (21).

Sx(f ) '
1
K 2
|v(e−j2π f )|4 · S(f ), 0 ≤ f ≤ 0.5. (27)

The approximation again arises from the end or edge effects, which
are expected to be small when L � K . The spectral properties of
this associated filter follow immediately from the previous discus-
sion.

5. Examples

5.1. Example 1: harmonic series with two real sinusoids

In this section, we consider the following process

yt =
2∑
k=1

αk sin(2π fkt)+ ξt (28)

where αk = (4, 2)T , fk = (0.1, 0.4)T , and ξt ∼ N (0, 1), ξt is
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Fig. 1. Filtering and spectral interpretations of example 1. (a) First four eigenvectors (first column); (b) Magnitude of eigenfilter spectrum (second column); (c) Convolution
filter coefficients (third column); (d) Magnitude of convolution filter spectrum (fourth column).
normally distributed with mean 0 and variance 1. The simulated
data length, N , is 1024. Both the signal and the noise are mean
corrected for purposes of analysis. The signal-to-noise ratio (SNR)
is 10.

5.1.1. Scree plot and eigenvector analysis
In this example, we choose K = 25. The scree plot (not shown)

gives four significant eigenvalues, grouped into two pairs. One
might anticipate that these two groups of eigenvalues arise from
the presence of the two harmonics in the data that correspond to
frequencies 0.1 and 0.4. The presence of additive noise produces a
large number of much smaller eigenvalues.
We use the Toeplitz approximation ATA ' LC to calculate the

SVD. This is a reasonable assumption, as indicated by the Frobenius
norm ratio.

‖ATA− LC‖F
‖ATA‖F

=
389.7− 388.2

388.2
= 0.031. (29)
The first four eigenvectors are shown in the first column of Fig. 1.
As discussed in Section 3, all the eigenvectors are either symmet-
ric or skew-symmetric. In this example, there are 13 symmetric
eigenvectors, and 12 skew-symmetric eigenvectors.

5.1.2. Eigenfilter analysis
From Property 5, the eigenfilters obtained from the first four

eigenvectors above are either palindromic or antipalindromic. The
magnitude of the associated spectral windows of these eigenfilters
is shown in the second column in Fig. 1. The spectral windows
show strong peaks at the harmonic frequencies, indicating that the
filtering algorithm behaves similar to a notch filter [36].
The roots for these eigenfilters are shown in Fig. 2. (The first

panel in Fig. 2 corresponds to the largest eigenvalue.) The number
of roots located at z−1 = ±1 for each eigenfilter is noted on the top
of each subfigure. The roots at±1 follow the properties shown in
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Fig. 2. Roots for the eigenfilters of example 1. The number of roots located at z−1 = ±1 is shown on the top of each panel.
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Fig. 3. First four RCs and the grouped series (dotted line) versus original series (solid line) of example 1.
Table 2. The eigenvalues are unique, so the zeros of eigenfilters as-
sociatedwith the smallest and largest eigenvalues all lie on the unit
circle.

5.1.3. Convolution filter analysis
The third column in Fig. 1 depicts the convolution filter coeffi-

cients. These are all zero-phase filters due to the symmetry of the
filter coefficients. Themagnitude of the spectral windows of corre-
sponding convolution filters is shown in the fourth column of this
figure. The peaks in these spectral plots correspond exactly to the
significant frequencies in the signal, i.e., f = 0.1 and 0.4. The prop-
erties in Table 3 also hold.

5.1.4. Reconstructed components (RCs)
The top four panels in Fig. 3 show the first four RCs obtained

by diagonal averaging. The original data is also included in each
of these plots. Several observations can be made: (i) the RCs are
paired, and each pair has almost the same pattern, and (ii) the
first two RCs are much larger than the second two RCs. This is
expected as the first two RCs correspond to the harmonic whose
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Fig. 5. Scree plot of synthetic SSC series.
frequency is 0.1 and whose power magnitude is four times that of
the second harmonic (see Eq. (28)). The last panel in Fig. 3 shows
the grouped reconstructed series from the first four RCs. The group
reconstructed series closely matches the original data. There is no
discernible phase lag, which is to be expected.

5.2. Example 2: synthetic SSC data

As an example, we consider a synthetic suspended-sediment
concentration (SSC) series shown in Fig. 4 and analyzed by Schoell-
hamer [9]. A 15 min SSC time series with mean 100 mg/L was gen-
erated using Eqs. (6) and (7) in [9].
y(t) = 0.2ε(t)cs(t)+ cs(t) (30)
and
cs(t) = 100− 25 cosωst + 25(1− cos 2ωst) sinωsnt

+ 25(1+ 0.25(1− cos 2ωst) sinωsnt) sinωat (31)
where εt is normally distributed random variate with zero mean
and unit variance. The seasonal angular frequency ωs = 2π/365
day−1, the spring/neap angular frequencyωsn = 2π/14 day−1 and
the advection angular frequency ωa = 2π/(12.5/24) day−1.
Eq. (31) was simulated for onewater year, giving 35,040 ‘obser-

vations’ for analysis. Prior to analysis the data wasmean corrected.

5.2.1. Scree plot and eigenvector analysis
In this example, we choose window length K = 121. We note

that Schoellhamer [9] used K = 120. Our analysis is based on the
Toeplitzmatrix. This provides a very good approximation toATA as
indicated by the Frobenius norm ratio which has the value 0.002.
The scree plot for the eigenvalues, Fig. 5, has been normalized

by the sum of the eigenvalues since the eigenvalues are very large.
Note the log scale on the vertical axis. The first three eigenval-
ues are an order of magnitude larger than the remaining ones. The
presence of many small eigenvalues suggests that the data con-
tains aperiodic or random components. Only one group of paired
eigenvalues is evident in Fig. 5. One might anticipate three groups
of paired eigenvalues, given the structure of the model. An expla-
nation for this behavior is given in the next subsection.
By using the Toeplitz approximation, 61 symmetric and 60

skew-symmetric eigenvectors are obtained. The first column of
Fig. 6 shows the first three eigenvectors.
5.2.2. Eigenfilter analysis
The magnitude of the associated spectral windows of these

eigenfilters is shown in the second column in Fig. 6. The spec-
tral window corresponding to the largest eigenvalue has the char-
acteristics of a low-pass filter. The second and third eigenfilters
correspond to a notch filter with normalized frequency of 0.02.
This frequency corresponds to the advection angular frequency
ωa = 2π/(12.5/24) day−1. Given the data and model, we may
expect three groups of paired eigenvalues. However, by only sim-
ulating one year’s data, the subtidal (annual) cycle shows up as
a low frequency component. Thus, this effect is captured in the
first eigenfilter. However, this eigenfilter also smooths out the ef-
fect of the fortnight component, which appears at the normal-
ized frequency 7.44 × 10−4. Advanced spectral methods such as
Thompson’s multi-taper method [38,39] readily separate the fort-
night/advection components. Additional insights into the spec-
trum are often obtained by using several spectral methods [40,41].
The roots of the eigenfilters follow the same properties in

Table 2 and example 1. Additionally, all the roots of eigenfilters
related to smallest and largest eigenvalues are located on the unit
circle. Due to similarity, the root plots are not shown.

5.2.3. Convolution filter analysis
The convolution filter coefficients are shown in the third col-

umn of Fig. 6 and the corresponding spectral characteristics of
these filters are shown in the fourth column of this figure. The con-
volution filter corresponding to the largest eigenvalue has a dis-
tinctively triangular shape and acts as a low-pass filter. The second
and third convolution filters have their power concentrated at a
normalized frequency of 0.02.

5.2.4. Reconstructed components (RCs)
The first three RCs are plotted in the last three panels of Fig. 7.

Individually they account for 48.7%, 5.1%, and 5.0% of the variation
in the data. (The data variance is 1546.7.) Table 4 confirms that the
RCs are not orthogonal.
The first RC is a very smooth signal, reflecting that it is obtained

by a low-pass filtering of the data. By comparing the patterns of
the other two RCs, it is clear that the identification of the harmonic
component has been done correctly, as the convolution filter acts
like a notch filter.
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Convolution filter coefficients (third column); (d) Magnitude of convolution filter spectrum (fourth column).
S
S

C
S

S
C

1
S

S
C

2
S

S
C

3

–100
0

100
200

–60
–30

0
30
60

–40
–20

0
20
40

–40
–20

0
20
40

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Fig. 7. Synthetic SSC series along with the first three RCs.



T.J. Harris, H. Yuan / Physica D 239 (2010) 1958–1967 1967
Table 4
Variance summary of first three components.

a λi∑K
i=1 λi

var(xi)
∑a
i=1 var(xi) var

(∑a
i=1 xi

)
1 0.5011 745.1 745.1 745.1
2 0.1064 81.2 826.3 838.1
3 0.1039 79.2 905.5 1086.1

6. Conclusion and discussion

Singular Spectrum Analysis is a flexible and useful method for
time-series analysis. The primary contributions of this paper have
been to provide additional insights into the filtering and spectral
characteristics of SSA technology and the enhancements that arise
by using diagonal averaging. These new results are derived from
the properties of symmetric Toeplitz matrices and the properties
of the resulting eigenfilters and convolution filters. Filtering and
spectral interpretations for the reconstructed series from diagonal
averaging were derived. The symmetric and skew-symmetric
behavior of the eigenfilters was exploited to derive a number of
these properties. It was shown that the reconstructed series could
be interpreted as zero-phase filtered responses, obtained by a
particular implementation of forward and reverse filtering of the
original data. It was also shown that whereas the latent variables
are orthogonal, the reconstructed series are not orthogonal. The
results in this paper should enable a more thorough comparison
of SSA with other filtering methods.
Multichannel extensions of SSA (MSSA) have been proposed

[42–44]. MSSA produces data-adaptive filters that can be used
separate patterns both in time and space. It is necessary to con-
struct a ‘grand’ block matrix, a multichannel equivalent to ATA/L.
This matrix also has a block Toeplitz approximation. This approx-
imation gives a symmetric, but not persymmetric grand matrix,
although every sub-block matrix is a persymmetric matrix. Ex-
ploitation of the properties of these highly structured matrices to
ascertain filtering and spectral properties, in a manner similar to
that employed in this paper, should be possible.
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