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Introduction

Owing to the multi-site nature of Ziegler-Natta catalysts,

kinetic models of ethylene copolymerizations that use

these catalysts tend to be very large with many parameters

that need to be estimated.[1–7] Experimental runs on

industrial reactors are expensive, especially when the

required setpoints lie outside of the normal pattern of

process operating conditions. Because of the expense of

obtaining custom experimental data and difficulties that

can be associated with parameter estimation, it is

important to design experiments and to use data as

effectively as possible when building mathematical

models. It is also important to extract all of the available

information from prior experiments that may have been

performed for other purposes.

Many end-use and processing properties of polyethylene

are influenced by molecular weight distribution (MWD)

and comonomer incorporation.[8] Industrial polyethylene

producers desire mathematical models that can predict the

MWD of ethylene/hexene and ethylene/butene copoly-

mers produced in gas-phase reactors using Ziegler-Natta

catalysts. If models that predict MWDs from reactor

operating conditions are combined with models that

predict end-use properties from MWDs,[9] then end-use

properties that are important to customers can be predicted

directly from reactor conditions. To this end, our research

group has used industrial data to develop simplified models

to predict the MWD and comonomer incorporation in
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Reliable model predictions require an appropriate model structure and also good parameter
estimates. For good parameter estimates to be obtained, it is important that the data used in
parameter estimation are informative. Alphabet-optimal experimental designs can be used to
ensure that new experiments are as informative
as possible. This work presents the development
of D- and A-optimal sequential experimental
designs for improving parameter precision in a
molecular-weight-distribution model for Ziegler-
Natta-catalyzed polyethylene. Novel V-optimal
designs techniques are developed to improve
the precision of model predictions, and anticip-
ated benefits are quantified. Problems with local
minima are discussed and comparisons between
the optimality criteria are made.
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Ziegler-Natta-catalyzed polyethylene.[10,11] The first step in

developing the MWD models was to use deconvolution of

MWD curves from industrial ethylene/hexene copolymers

to gain insight into the kinetics of different types of catalyst

sites.[12] This insight was then used to develop a simplified

reaction scheme and steady-state model to predict MWDs

of ethylene/hexene copolymer produced at 90 8C.[10]

Finally, a more complete model was developed that

accounts for the effects of the reactor temperature and

for use of either butene or hexene comonomer.[11] Estim-

ability analysis and cross-validation were used to obtain

parameter estimates from the available industrial data.[11]

The model equations are shown in Table 1, and the best

parameter estimates that were obtained are shown in

Table 2.

Equation (1) is the overall MWD curve produced by five

types of active sites, assuming that each site produces a

Flory distribution.[13,14] The MWD of the copolymer

component produced by the jth type of active site depends

on tj and mj defined in Equation (2) and (3), respectively,

where tj is the ratio of the rates of chain-termination

reactions to those of propagation reactions at the jth type of

site, and mj is the mass fraction of copolymer produced at

the jth type of site, which is calculated using Equation (4) to

(8). Detailed information about the derivation of the

equations in Table 1 is provided in earlier articles.[10,11]

Note that the model in Table 1 contains 25 parameters,

some of which are shared by multiple active sites. For

example, the activation energy parameter eK1low in

Equation (2) is shared by sites 1 and 2, which produce

lower-molecular-weight copolymer, and eK1high is shared by

sites 3, 4 and 5, which produce higher-molecular-weight

polymer. The parameters in Table 2 can also be used to

predict overall comonomer incorporation in the polymer.

Equation (9a) and (9b) describe the mass fractions of butene

and hexene, respectively, using the comonomer mole

fractions for each site, as described in Equation (10a) and

(10b).

Although advanced statistical techniques, including

correlation analysis[12] and estimability analysis,[11] were

used as aids in model simplification and parameter

estimation, many of the parameter estimates in Table 2

are imprecise. Some parameter values are not significantly

different from zero, and others were left at their initial

guesses due to insufficient information in the industrial

data set.[11] To further improve the model predictions,

additional data are required. An objective of the current

work is to select a small number of experimental runs that,

when combined with the existing data, can be used to

improve parameter estimates and model predictions for

this polyethylene MWD model. A review of the use of

alphabet-optimal experimental designs is presented below,

and the sequential experimental design problem is

discussed. Sequential A- and D-optimal design methods

are used to select four new experimental runs aimed at

improving parameter precision. Novel V-optimal designs

techniques are developed to improve the precision of model

predictions, and anticipated benefits are quantified. Diffi-

culties with local optima are addressed and the A-, D-, and

V-optimal experimental designs are compared.

Application of Optimal Experimental
Designs

Well-designed experiments ensure that the data that are

collected are useful for parameter estimation and for

improving model predictions. One common way of

selecting appropriate experiments for parameter estima-

tion is with an alphabet-optimal design. Although a large

number of these designs have been proposed (e.g., A, D, E, G,

I, L, T, V)[15–17] only a few are of interest in this work, where

the goal is to improve parameter estimates and predictions

from a simplified model. Note that considerable work has

been done on selecting experimental runs for model

discrimination,[16,18–21] but this is beyond the focus of

the current article.

D-optimal designs are the most commonly used of the

alphabet-optimal designs.[15,22–30] A D-optimal design is

one that minimizes the volume of the parameter joint

confidence region, based on linearization of the model.

Minimizing this volume is equivalent to minimizing the

determinant of the variance-covariance matrix, or max-

imizing the determinant of the Fisher Information matrix.

Thus, the D-optimality objective function for nonlinear

regression problems is:Q2

JD ¼ ZTZ
�� �� (11)

where Z is a scaled parametric sensitivity matrix:

Z ¼

@y11

@u1

su1

sy11
� � � @y11

@uP

suP
sy11

..

. . .
. ..

.

@yRn
@u1

su1

syRn
� � � @yRn

@uP

suP
syRn

2
666664

3
777775

(12)

Where yjk is a predicted response at experimental

condition j for variable k, ui is the ith parameter, and sui
and syjk are scaling factors related to the uncertainties in

initial parameter guesses and in measured responses,

respectively. Note that the Z matrix in Equation (12) is the

same scaled sensitivity matrix used for estimability

analysis.[11]

D-optimal designs have found considerable use in

biological and chemical kinetic studies.[15,29,30] For exam-

ple, Van Derlinden et al.[28] used them to determine

parameter values for models relating temperature to

D. E. Thompson, K. B. McAuley, P. J. McLellan

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

2829

3031

32

33

34

35

36

37

38

39

40

41

2
Macromol. React. Eng. 2009, 3, 000–000

� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim DOI: 10.1002/mren.200900033

REarly View Publication; these are NOT the final page numbers, use DOI for citation !!



Design of Optimal Sequential Experiments . . .

111

121212

123123123

123412341234

123451234512345

123456123456123456

123456712345671234567

123456781234567812345678

123456789123456789123456789

123456789101234567891012345678910

123456789101112345678910111234567891011

123456789101112123456789101112123456789101112

123456789101112131234567891011121312345678910111213

123456789101112131412345678910111213141234567891011121314

123456789101112131415123456789101112131415123456789101112131415

123456789101112131415161234567891011121314151612345678910111213141516

123456789101112131415161712345678910111213141516171234567891011121314151617

123456789101112131415161718123456789101112131415161718123456789101112131415161718

234567891011121314151617181923456789101112131415161718192345678910111213141516171819

234567891011121314151617181923456789101112131415161718192345678910111213141516171819

345678910111213141516171819203456789101112131415161718192034567891011121314151617181920

345678910111213141516171819203456789101112131415161718192034567891011121314151617181920

456789101112131415161718192021456789101112131415161718192021456789101112131415161718192021

456789101112131415161718192021456789101112131415161718192021456789101112131415161718192021

567891011121314151617181920212256789101112131415161718192021225678910111213141516171819202122

567891011121314151617181920212256789101112131415161718192021225678910111213141516171819202122

678910111213141516171819202122236789101112131415161718192021222367891011121314151617181920212223

678910111213141516171819202122236789101112131415161718192021222367891011121314151617181920212223

789101112131415161718192021222324789101112131415161718192021222324789101112131415161718192021222324

789101112131415161718192021222324789101112131415161718192021222324789101112131415161718192021222324

891011121314151617181920212223242589101112131415161718192021222324258910111213141516171819202122232425

891011121314151617181920212223242589101112131415161718192021222324258910111213141516171819202122232425

910111213141516171819202122232425269101112131415161718192021222324252691011121314151617181920212223242526

910111213141516171819202122232425269101112131415161718192021222324252691011121314151617181920212223242526

101112131415161718192021222324252627101112131415161718192021222324252627101112131415161718192021222324252627

101112131415161718192021222324252627101112131415161718192021222324252627101112131415161718192021222324252627

111213141516171819202122232425262728111213141516171819202122232425262728111213141516171819202122232425262728

111213141516171819202122232425262728111213141516171819202122232425262728111213141516171819202122232425262728

121314151617181920212223242526272829121314151617181920212223242526272829121314151617181920212223242526272829

121314151617181920212223242526272829121314151617181920212223242526272829121314151617181920212223242526272829

131415161718192021222324252627282930131415161718192021222324252627282930131415161718192021222324252627282930

131415161718192021222324252627282930131415161718192021222324252627282930131415161718192021222324252627282930

141516171819202122232425262728293031141516171819202122232425262728293031141516171819202122232425262728293031

141516171819202122232425262728293031141516171819202122232425262728293031141516171819202122232425262728293031

151617181920212223242526272829303132151617181920212223242526272829303132151617181920212223242526272829303132

151617181920212223242526272829303132151617181920212223242526272829303132151617181920212223242526272829303132

161718192021222324252627282930313233161718192021222324252627282930313233161718192021222324252627282930313233

161718192021222324252627282930313233161718192021222324252627282930313233161718192021222324252627282930313233

171819202122232425262728293031323334171819202122232425262728293031323334171819202122232425262728293031323334

171819202122232425262728293031323334171819202122232425262728293031323334171819202122232425262728293031323334

181920212223242526272829303132333435181920212223242526272829303132333435181920212223242526272829303132333435

181920212223242526272829303132333435181920212223242526272829303132333435181920212223242526272829303132333435

192021222324252627282930313233343536192021222324252627282930313233343536192021222324252627282930313233343536

192021222324252627282930313233343536192021222324252627282930313233343536192021222324252627282930313233343536

192021222324252627282930313233343536192021222324252627282930313233343536192021222324252627282930313233343536

Table 1. Model equations.

dW
d log10 Mw

¼ m1 r2 ln ð10Þ � t2
1 � expð�t1rÞ

� �
þm2 r2 ln ð10Þ � t2

2 � exp ð � t2rÞ
� �

þm3 r2 ln ð10Þ � t2
3 � expð�t3rÞ

� �
þm4 r2 ln ð10Þ � t2

4 � exp ð � t4rÞ
� �

þm5 r2 ln ð10Þ � t2
5 � expð�t5rÞ

� �
(1)

tj ¼ K1j exp "K1;low
1
T � 1

T0

� �� �
H2½ �
C2½ � þ K4

1
C2½ � for j¼ 1,2 OR

tj ¼ K1j exp "K1;high
1
T � 1

T0

� �� �
H2½ �
C2½ � þ K4

1
C2½ � for j¼ 3,4,5 (2)

mj ¼
NjP5

j¼1

Nj

(3)

N1 ¼ a21 exp "a21
1
T � 1

T0

� �� �
þ a3B;low exp "a3B;low

1
T � 1

T0

� �� �
C4½ �
C2½ � þ a3H;low exp "a3H;low

1
T � 1

T0

� �� �
C6½ �
C2½ �

� �

1 þ a1;lowK12 exp "K;low
1
T � 1

T0

� �� �
H2½ �

C2½ � þ a4B exp "a4
1
T � 1

T0

� �� �
C4½ �þa4H exp "a4

1
T � 1

T0

� �� �
C6½ �

0
@

1
A

Q
j¼3;4;5

1 þ a1;highK1j exp "K;high
1
T � 1

T0

� �� �
H2½ �
C2½ �

� �

(4)

N2 ¼ 1 þ a3B;low exp "a3B;low
1
T � 1

T0

� �� �
C4½ �
C2½ � þ a3H;low exp "a3H;low

1
T � 1

T0

� �� �
C6½ �
C2½ �

� �

1 þ a1;lowK11 exp "K;low
1
T � 1

T0

� �� �
H2½ �

C2½ �þa4B exp "a4
1
T � 1

T0

� �� �
C4½ �þa4H exp "a4

1
T � 1

T0

� �� �
C6½ �

0
@

1
A

Q
j¼3;4;5

1 þ a1;highK1j exp "K;high
1
T � 1

T0

� �� �
H2½ �
C2½ �

� �

(5)

N3 ¼ a23 exp "a2;high
1
T � 1

T0

� �� �
þ a3B;high

C4½ �
C2½ � þ a3H;high

C6½ �
C2½ �

� �

Q
j¼1;2

1 þ a1;lowK1j exp "K;low
1
T � 1

T0

� �� �
H2½ �

C2½ � þ a4B exp "a4
1
T�

1
T0

� �� �
C4½ � þ a4H exp "a4

1
T � 1

T0

� �� �
C6½ �

0
@

1
A

Q
j¼4;5

1 þ a1;highK1j exp "K;high
1
T � 1

T0

� �� �
H2½ �
C2½ �

� �

(6)

N4 ¼ a24 exp "a2;high
1
T � 1

T0

� �� �
þ a3B;high

C4½ �
C2½ � þ a3H;high

C6½ �
C2½ �

� �

Q
j¼1;2

1 þ a1;lowK1j exp "K;low
1
T � 1

T0

� �� �
H2½ �

C2½ �þa4B exp "a4
1
T � 1

T0

� �� �
C4½ � þ a4H exp "a4

1
T � 1

T0

� �� �
C6½ �

0
@

1
A

Q
j¼3;5

1 þ a1;highK1j exp "K;high
1
T � 1

T0

� �� �
H2½ �
C2½ �

� �

(1.7)

N5 ¼ a25 exp "a2high
1
T � 1

T0

� �� �
þ a3Bhigh

C4½ �
C2½ � þ a3Hhigh

C6½ �
C2½ �

� �

Q
j¼1;2

1 þ a1lowK1j exp "Klow
1
T � 1

T0

� �� �
H2½ �

C2½ �þa4B exp "a4
1
T � 1

T0

� �� �
C4½ � þ a4H exp "a4

1
T � 1

T0

� �� �
C6½ �

0
@

1
A

Q
j¼3;4

1 þ a1highK1j exp "Khigh
1
T � 1

T0

� �� �
H2½ �
C2½ �

� �

(8)

mB ¼
P

j¼1�5

mj
3fBj

1 þ 2fBj

� �
(9a)

mH ¼
P

j¼1�5

mj
3fHj

1 þ 2fHj

� �
(9b)

fBj ¼ 1

1þ
a2j exp "a2j

1
T
� 1

T0

� �� �
a3Bj exp "a3Bj

1
T
� 1

T0

� �� � 1
C4½ �
C2½ �

(10a)

fHj ¼ 1

1þ
a2j exp "a2j

1
T � 1

T0

� �� �
a3Hj exp "a3Hj

1
T
� 1

T0

� �� � 1
C6½ �
C2½ �

(10b)
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microbial growth rates, Balsa-Canto et al.[31] to estimate

kinetic parameters for thermal degradation of nutrients in

food, Gueorguieva et al.[32] to improve parameter estimates

in pharmacokinetic models, Atkinson et al.[16] for estima-

tion of kinetic parameters for reversible chemical reactions,

and Polic et al.[33] for parameter estimation in a styrene/

methyl methacrylate copolymerization model.

The D-optimality criterion is often used for sequential

experimental designs. Sequential designs are appealing

because they offer the chance to change strategy after a first

round of experiments has been completed,[24] when better

information is available than at the start of the experi-

mental program. New experimental runs are selected after

some runs have been completed. Sequential designs also

help modelers to build effectively on previously existing

data within their organization. In sequential experimental

design, the sensitivity coefficients for the prior experiments

are included in the Z matrix, along with new rows

corresponding to the new experimental run conditions

that are selected.[34] The Z matrix for the sequential design

therefore takes the form:

Z ¼ Zold

Znew

� �
(13)

Where Zold is the scaled sensitivity matrix for the pre-

existing runs, and Znew contains rows of scaled sensitivity

coefficients corresponding to the new runs being selected.

Given a set of initial parameter guesses, the coefficients in

Zold are fixed numerical values, and the coefficients in Znew

depend on the experimental settings for the proposed new

runs. Many strategies have been developed for generation

of D-optimal designs by sequentially adding runs to an

existing design.[27,34–39]

Criticisms of alphabet-optimal designs in general, and of

D-optimal designs in particular, center mostly around

sensitivity to model mis-specification and poor initial

parameter guesses.[24,35,40] Imperfect model structure and

poor initial parameter guesses introduce bias into the

design. In non-linear models, such as the ethylene

copolymerization model in this work, the elements of Z

used in the design depend on the initial parameter guesses.

As a result of these problems, some effort has focused on

methods of experimental design that are more robust to

model mis-specification.

One approach taken to ensure model robustness is the

use of Bayesian D-optimal designs. A Bayesian design

allows the modeler to investigate additional parameters

and effects that are believed to be unimportant for

obtaining good model predictions.[41] These unimportant

factors, which were likely not included in the initial model,

make the experimental design more robust to model mis-

specification because the design can help to uncover poor

initial assumptions. Ruggoo and Vandebroek[35] simulated

a Bayesian D-optimal design, followed sequentially by a

classical D-optimal design, for an empirical linear regres-

sion model. They concluded that this combined approach

produces superior results to either a Bayesian D-optimal

design or a classical D-optimal design. Bayesian designs are

more computationally intensive than standard optimal

designs because they require numerical integration of

probability density functions.[36] To our knowledge, the

sequential Bayesian approach developed by Ruggoo and

Vanderbroek[35] has not been used for mechanistic non-

linear models. Myers[24,36] provides a good review of

approaches to ensure robustness in optimal experimental

designs. In addition to the Bayesian approach, Myers also

advocates sequential design. Sequential designs offer

improved robustness against errors in initial guesses by

allowing for parameter values to be corrected and for model

structure adjustments to be made after an initial round of

experiments.
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Table 2. Parameter estimates.

Parameter Estimate

K11 0.0149

K12 0.0030

K13 0.0011

K14 0.0003

K15 4.0� 10�13

K4 7.9� 10�4

a1, low 2 431.6

a1, high 390.7

a21 0.4755

a23 0.3419

a24 0.0671

a25 0.0154

a3B, low 0.0378

a3B, high 0.0154

a3H, low 0.3065

a3H, high 4.44� 10�9

a4B 10.63

a4H 28.84

eK, low �3 095

eK, high �4 070

ea21 �2 476

ea2, high �259.5

ea3B, low �4 377

ea3H, low 495.6

ea4 0
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Another type of alphabet-optimal design is the A-

optimal design, which minimizes the total parameter

variance. The total parameter variance is obtained from the

sum of the diagonal elements of the variance covariance

matrix. Therefore, A-optimal designs minimize:

JA ¼ trace ZTZ
� 	�1

� �
(14)

Although D-optimal designs are more commonly used, A-

optimal designs are more computationally appealing[42]

since they only use the diagonal elements of the covariance

matrix. Schittkowski used A-optimal designs for multi-

response ordinary-differential-equation and differential-

algebraic-equation models that describe the dynamic

behavior of chemical processes.[42]

Model users often care more about the quality of the

model predictions than about how well the parameters in

the model are estimated. D-optimal and A-optimal designs

focus primarily on improving the quality of parameter

estimates, rather than on improving the quality of the

model predictions. Although better parameter estimates

will generally lead to better predictions, it is possible to

obtain good model predictions when some of the less-

important parameters are poorly estimated. V-optimal

designs (also known as Q-optimal designs) have been used

to a limited extent to select experiments aimed specifically

at improving model predictions.[43] Thus, the information

gained from a V-optimal design improves the estimates of

the most important parameters more than the estimates of

the less-important parameters, whereas D- or A-optimal

designs treat all parameters equally. A V-optimal design is

one that minimizes the average prediction variance over an

operating region of interest. Thus a V-optimal design

minimizes:

JV ¼ trace Zint ZTZ
� 	�1

ZT
int

� �
(15)

where Zint is a matrix of scaled sensitivity coefficients

corresponding to a particular set of operating conditions of

interest (i.e., conditions where precise model predictions

are desired by the model user). G-optimal designs, which

also focus on model-prediction variance, minimize the

maximum prediction variance over a domain of interest,

which is equivalent to minimizing the maximum of

Zint ZTZð Þ�1
ZT

int

� �
. G-optimal designs are more computa-

tionally intensive than V-optimal designs.

Box and Draper[37,41] provide 14 criteria for what

constitutes a good experimental design. Of particular

interest to the current work is the criterion that a design

should ‘‘ensure that the fitted value at ŷðXÞ be as close as

possible to the true value’’.[40,p.19] In other words, the

experimental design should ensure good model predictions.

Box outlined his concerns about the suitability of alphabet

optimal designs.[40] Of particular interest in the current

work are his concerns about i) regions of experimental

feasibility and modeling interest, and ii) acknowledging

bias in experimental designs. When describing his first

concern, Box asserts that the region of interest for making

model predictions is usually much smaller than the region

of feasible operation. He therefore reasons that designs that

artificially constrain the design variables to the region of

interest would not necessarily lead to the best predictions,

since they do not take advantage of potential information

that may be obtained by experimenting over a larger region.

G- and V-optimal designs seem to address this concern very

well; however, Box[40] indicates that G-optimality may not

be practically desirable because of its minimax nature. He

does not discuss V-optimality, perhaps because the V-

optimal criterion was not used in 1982, but it would seem

that V-optimality does not suffer from the same problems

as G-optimality and so may be better suited for designing

effective and practical experiments. It is not clear when V-

optimality was first invented; however, it appears to have

evolved out of Box and Draper’s idea of integrated

variance.[17,45–48] Welch[17] included V-optimality in a set

of algorithms for computer-generated design of experi-

ments. Liu and Neudecker[48] used V-optimal designs in

experiments involving mixtures of several components.

François et al.[49] used V-optimal designs for selecting

experiments to develop univariate nonlinear calibration

models. A recent review[30] of the experimental design

literature for chemical and biological models describes

many instances of D- and A-optimal designs, but only one

article that considers V-optimal design, which is used to

select measurement times in a dynamic model for

epidermal-growth-factor receptor signaling.[50] A more

recent review of the systems biology experimental design

literature does not mention V-optimal designs at all.[29] We

are not aware of any applications of V-optimal design to

polymerization or other chemical process models.

The second issue, bias in experimental design, is of

concern in the current work because of the simplifying

assumptions used in the formulation of the model in

Table 1. More complete and complex models reduce the

bias, but this comes at the cost of increasing prediction

variance[51,52] because uncertainty in the model para-

meters propagates into uncertainty in predictions. Thus

there is a trade-off between minimizing prediction variance

and reducing bias. Traditional alphabet optimal designs,

which assume that the model structure is correct, do not

address this concern. Some work has been done to include

model imperfections and bias in the optimality criteria. Box

and Draper[45] proposed a method that accounts for both

variance and bias. In a polynomial model, they minimized

the expected mean square error, which is the combination

of the variance error and the bias error. Box and Draper
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noted that, in their example, the optimal design was very

close to one that minimizes bias alone and ignores variance.

Karson et al.[46] have done work with minimum-bias

designs. After they minimized the bias, they then mini-

mized the variance while ensuring the minimum bias.

Evans and Manson[47] have also done work with minimum-

bias estimation using the criterion outlined by Karson

et al.[46] Evans and Manson[47] were able to select A-, D- and

V-optimal designs from within the set of experiments that

minimized the bias in a two-factor system. Draper and

Sanders[53] have also used this approach to select rotatable

designs for simple models. This minimum-bias approach is

appealing, but it is difficult to apply to nonlinear

mechanistic models where the bias cannot readily be

assumed to be some function of higher-order terms.

Experimental Designs for the Simplified
Polyethylene MWD Model

Because of the multi-site nature of Ziegler-Natta catalysts,

the associated olefin polymerization models tend to be very

large and to have many parameters. In this work, an

attempt is made to select new experimental runs to

improve the predictions of the polyethylene copolymer

MWD model. An existing industrial data set was used to

obtain the parameter estimates presented in an earlier

work.[11] Many of these parameter estimates have wide

confidence intervals, and not all of the parameter estimates

are statistically different from zero. Some less-important

model parameters were never estimated and were left at

their initial guesses.

It is important to account for information from the 31

prior experimental runs that have been obtained (15 with

butene comonomer and 16 with hexene) when planning

additional experiments. For each of these 31 experimental

runs, a MWD curve and a comonomer incorporation

measurement are available. The MWD curves can be

discretized to give twenty equally-spaced (on a log scale)

points per curve (as shown in Figure 1) with each of

these points leading to a row in the sensitivity matrix, Z.

Twenty points are sufficient to provide a reliable picture of

the MWD curve from each run, without causing an undue

computational load during sequential optimal-design

calculations. Additional rows in the Z matrix correspond

to predictions of comonomer incorporation measurements

(one row for each of the 31 experiments). As a result, Zold,

the sensitivity matrix from the prior experiments has

31� (20þ 1)¼ 651 rows [see Equation (13)]. Since the

simplified model has 25 parameters, the overall sensitivity

matrix Z has 25 columns, each containing derivatives with

respect to a particular parameter. Note that each element in

the sensitivity matrix is scaled appropriately, as shown in

Equation (12).[11] In the analysis that follows, assume that

four additional runs can be selected. Each proposed

experiment will provide 20 new values from the associated

MWD curve (equally spaced between 2.7 and 6.6 on the log

scale), along with a comonomer incorporation measure-

ment. Thus, the proposed experiments will add 84 new

rows to the Z matrix. Since D-optimal designs are the most

commonly used type of experimental design, a sensible

starting point is to determine the D-optimal designs that

arise from this sequential design problem. A D-optimal

design is one that maximizes the determinant of the Fisher

information matrix (i.e., that maximizes ZTZ
�� ��). The decision

variables for this optimization problem are the following

four reactor settings for each of the four proposed runs:

reactor temperature (T), gas-phase hydrogen-to-ethylene

ratio (H2/C2), the hexene-to-ethylene ratio (C6/C2), and the

butene-to-ethylene ratio (C4/C2). The desired values of

these reactor settings can be achieved and maintained

using the available automatic control system of the pilot-

plant reactor. The gas-phase polyethylene reactor of

interest can operate over a wide range of temperatures

below the melting point of the ethylene copolymers.[54]

High temperatures are desirable because they lead to high

reaction rates and to higher yields per unit mass of catalyst.

In this optimization problem, the temperature is con-

strained to be between 80 and 120 8C. Note that tempera-

tures as low as 80 8C would not be desirable for industrial

polymer production, but Box’s advice[40] that the region of

operation for designed experiments should be larger than

the region of commercial interest where good predictions

are desired has been heeded. The hydrogen-to-ethylene

mole ratio is constrained between 0.1 and 0.6 to ensure that

accurate MWD measurements can be obtained, and

the comonomer mole ratios are constrained between

0 and 0.3. It is assumed that only one comonomer

(either butene or hexene) can be used at a time. The
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Figure 1. A measured HDPE MWD curve characterized by 20
discrete points.
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following complementarity constraints are used to meet

this requirement:[55]

C4=C2ð Þ C6=C2ð Þ ¼ 0
C4=C2ð Þ þ C6=C2ð Þ � 0

(16)

Finally, to ensure that the reactor operating temperature

remains safely below the melting point of the polymer, the

following inequality constraint is used:

T � 122 � 81ðCx=C2Þ (17)

where T is the temperature (in 8C) and Cx=C2 is the

comonomer (butene or hexene)-to-ethylene ratio. A mini-

mum spacing constraint was also introduced to keep

multiple experiments from being stacked at the same

operating point:

The optimization was performed using the fmincon

routine in MatlabTM, which can accommodate the required

equality and inequality constraints. The algorithm in

fminconuses a sequential quadratic programming method.

Expressions for analytical partial derivatives of the model

equations with respect to the parameters (i.e., the elements

of Z) were developed using MapleTM. These partial

derivatives are complicated expressions, because the model

equations are complex. Note that Equation (1) [with

Equation (2) to (8) substituted] is used to predict MWD

and Equation (10a) and (10b) [with Equation (3) to (9)

substituted] are used to compute comonomer incorpora-

tion. Numerical values of the parameters in Table 2 were

substituted into the partial derivative expressions, produ-

cing numerical values for the elements of Zold. The elements

of Znew are analytical functions of the decision variables for

the four proposed experimental runs [(H2/C2), (C4/C2), (C6/

C2), T]. The fmincon routine used these analytical expres-

sions to calculate numerical derivatives of the various

objective functions [Equation (5.6) to (5.8)] &Q1to author –

please check/correct equation numbers here& with

respect to the decision variables. Using fmincon, each

optimization took between 15 and 40 min to solve.

Six different sets of initial guesses were used for the

decision variables. Unfortunately, several different local

optima for the D-optimal design were obtained from the

different initial guesses, as shown in Table 3. The value of

the objective function ID ¼ ZTZ
�� �� is reported for each of these

local optima. The first set of initial guesses includes points

where good model predictions are desired. The resulting

locally optimal runs, which are all at constraints, are

reasonable since data collected over a wide operating

range are often the most informative.[40] The second set of

initial conditions is only slightly different from first the set,

with each of the decision variables perturbed randomly up

or down by a small amount. As expected, the resulting local

optimum is the same as that obtained starting from the first

initial guess. The third set of initial guesses contains run

conditions at extremes of the operating range. In this case,

the resulting locally optimal design points have not moved

very far from the corresponding initial guesses. The fourth

set of initial guesses has runs that are tightly grouped near

the center of the operating range. The resulting converged

design points, which fall on constraints, have the highest

objective function value among those obtained from the six

attempts.

It is disappointing, but not surprising, that numerous

local minima were obtained from different starting points

because of the nonlinearity of the system. Polic et al.[33]

obtained a complex objective function surface with many

ridges and local optima when designing D-optimal experi-

ments for parameter estimation in a styrene/methyl

methacrylate copolymerization model. The best D-optimal

designs obtained for the MWD model (Sets 7 and 8 in

Table 3) consist of two hexene-comonomer runs, one

butene-comonomer run and one homopolymerization run.

Note that these optima were only obtained from a limited

set of starting points. The optimizer never switched from

the initial comonomer that was used in any of the runs as

the solution converged. Even when all-butene or all-hexene

designs (the fifth and sixth set of initial conditions) were

used as starting points, the optimizer did not change which

comonomer was used in any of the runs, suggesting that the

gradient-based optimizer in fmincon is not suitable for

solving this difficult optimal design problem, possibly due

to the complementarity constraints.

Several other optimization packages were considered,

including the gradient-based interior-point optimizer

IPOPTTM[56] and the direct-search simplex optimizer

simpsTM in MatlabTM. Using IPOPTTM proved to be

impossible because AMPLTM, which uses symbolic compu-

tation to provide analytical derivatives to IPOPTTM, has no

matrix algebra capabilities. Attempts were made to derive

symbolic expressions for the required objective functions in

MapleTM, but they were too large to compute and caused

memory overflow. Computation of the determinants and

matrix inverses required in the objective functions was

prohibitively difficult. Since simpsTM uses MatlabTM, matrix
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Ti � Tj
� 	2

Tmax � Tminð Þ2 þ
H2=C2ð Þi� H2=C2ð Þj

� �2

H2=C2ð Þmax� H2=C2ð Þmin

� 	2 þ
C4=C2ð Þi� C4=C2ð Þj

� �2

C4=C2ð Þmax� C4=C2ð Þmin

� 	2 þ
C6=C2ð Þi� C6=C2ð Þj

� �2

C6=C2ð Þmax� C6=C2ð Þmin

� 	2

vuuut � 0:5 (18)
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algebra is straightforward for this direct-search optimizer.

However, simpsTM does not readily accommodate some of

the constraints [Equation (6) to (8)]. Perhaps the constraints

could be reformulated using additional variables, but this

option was not pursued. Instead, brute force optimization

with fmincon was used, starting from a large number of

initial guesses.

The existence of local optima makes it difficult to know

whether the global optimum has been found. One way of

addressing problems with local optima is to use a large

number of initial guesses spread over a range of values.[33]

By moving the optimization starting point to different

places, there is a better chance that the optimization will

converge to the global optimum at least once. Using this

strategy, 112 different sets of initial guesses were selected

at well-spaced points throughout the operating region.

Local D-optimal designs were determined from each of

these starting points. Once all of the optimizations had

converged, the best locally D-optimal experimental design

(among the results obtained) was determined and is
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Table 3. D-optimal design of experiments. The most D-optimal design is shown in bold.

Set J (�10�60) Run Initial Conditions D-optimal Runs

Temp (-C) H2/C2 C4/C2 C6/C2 Temp (-C) H2/C2 C4/C2 C6/C2

1 3.6 1 100 0.4 0 0.15 100 0.6 0 0.27

2 105 0.4 0.1 0 120 0.6 0 0

3 115 0.2 0 0.01 120 0.1 0 0

4 90 0.6 0.25 0 80 0.6 0.3 0

2 3.6 1 101 0.41 0 0.16 100 0.6 0 0.27

2 106 0.39 0.09 0 120 0.6 0 0

3 114 0.21 0 0.009 120 0.1 0 0

4 91 0.59 0.24 0 80 0.6 0.3 0

3 2.73 1 80 0.1 0 0.01 80 0.1 0 0

2 80 0.6 0 0.3 80 0.1 0 0.3

3 120 0.1 0.01 0 120 0.1 0 0

4 120 0.6 0.02 0 120 0.6 0 0

4 9.01 1 105 0.4 0 0.1 112.3 0.6 0 0.118

2 105 0.4 0 0.15 97.5 0.1 0 0.3

3 105 0.4 0.1 0 120 0.6 0 0

4 105 0.4 0.15 0 112.1 0.6 0.12 0

5 1.27 1 100 0.4 0.15 0 119.4 0.6 0.03 0

2 105 0.4 0.1 0 120 0.6 0 0

3 115 0.2 0.01 0 120 0.1 0 0

4 90 0.6 0.25 0 80 0.6 0.3 0

6 2.19 1 100 0.4 0 0.15 97.5 0.1 0 0.3

2 105 0.4 0 0.1 120 0.6 0 0.023

3 115 0.2 0 0.01 120 0.1 0 0

4 90 0.6 0 0.25 80 0.6 0 0.3

7 56.35 1 91.25 0.267 0.1 0 80 0.1 0.3 0

2 97.07 0.4 0 0.2 120 0.6 0 0

3 90 0.267 0 0.2 80 0.1 0 0.3

4 90 0.4 0 0.2 105.2 0.1 0 0.205

8 51.44 1 80 0.1 0.3 0 80 0.1 0.3 0

2 97.55 0.5 0.3 0 120 0.6 0 0

3 100 0.1 0 0.182 97.5 0.1 0 0.3

4 100 0.5 0 0.182 114.1 0.6 0 0.096
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reported as the seventh case in Table 3. Although the solver

only converged on the optimal design once, there was

another point that had nearly as good an objective value

that was obtained 5 times and is reported as case 8 in

Table 3. The resulting design points are along constraints

and are far apart in the available operating region.

The A-optimality criterion was also used to design

experiments. Again, six different starting points, the same

as for the D-optimal designs, were used initially. The results

are shown in Table 4. When the optimization was started

from the well-spaced starting points, the ‘‘best’’ design was

selected with only butene comonomer and homopolymer-

ization runs included (set 9 in Table 4). The objective

function value for set 5 is nearly as good as for set 9, and

these experiments were obtained from 11 of the 118

different initial guesses. The optimizer showed the same

inability to switch between comonomers as was seen with

the D-optimality calculations. The best run selected using

the A-optimality criterion did not contain an experiment

with hexene. This A-optimal design has one homopolymer-

ization run and three runs with butene. Note that the best

D-optimal design (row 7 of Table 3) was very different from

the A-optimal design in that it consisted of a homopoly-

merization run along with two hexene runs and a butene

run.

Finally, V-optimal designs were also determined, starting

from the same initial guesses used in selecting the D- and

A-optimal designs. Ten operating points that represent the

region where good predictions are required were selected

(see Table 5) to calculate the Zint matrix in Equation (15).
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Table 4. A-optimal design of experiments. The most A-optimal design is shown in bold.

Set J Run Initial Conditions A-optimal Runs

Temp (-C) H2/C2 C4/C2 C6/C2 Temp (-C) H2/C2 C4/C2 C6/C2

1 3.12 1 100 0.4 0 0.15 102.5 0.6 0 0.239

2 105 0.4 0.1 0 110.8 0.1 0.136 0

3 115 0.2 0 0.01 120 0.1 0 0

4 90 0.6 0.25 0 80 0.1 0.3 0

2 3.12 1 101 0.41 0 0.16 102.5 0.6 0 0.239

2 106 0.39 0.09 0 110.8 0.1 0.136 0

3 114 0.21 0 0.009 120 0.1 0 0

4 91 0.59 0.24 0 80 0.1 0.3 0

3 3 1 80 0.1 0 0.01 80 0.1 0 0

2 80 0.6 0 0.3 80 0.1 0.3 0

3 120 0.1 0.01 0 110.8 0.1 0.136 0

4 120 0.6 0.02 0 120 0.6 0 0

4 4.72 1 105 0.4 0 0.1 119.2 0.6 0 0.032

2 105 0.4 0 0.15 97.5 0.1 0 0.3

3 105 0.4 0.1 0 112 0.6 0.122 0

4 105 0.4 0.15 0 112.9 0.1 0.111 0

5 2.81 1 100 0.4 0.15 0 120 0.6 0 0

2 105 0.4 0.1 0 110.8 0.1 0.136 0

3 115 0.2 0.01 0 111.8 0.6 0.125 0

4 90 0.6 0.25 0 80 0.1 0.3 0

6 10.54 1 100 0.4 0 0.15 105.7 0.6 0 0.2

2 105 0.4 0 0.1 120 0.6 0 0

3 115 0.2 0 0.01 120 0.1 0 0

4 90 0.6 0 0.25 84.6 0.1 0 0.3

9 2.71 1 91.7 0.267 0.3 0 80 0.15 0.3 0

2 85.85 0.4 0.3 0 80 0.1 0.3 0

3 105 0.267 0 0 110 0.1 0.147 0

4 105 0.4 0 0 120 0.6 0 0
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Using these 10 operating points, Zint has dimensions 210 by

25. Note that this approach for V-optimal design is different

to that used by previous researchers. Instead of specifying

discrete points of interest, Casey et al.[50] and other

advocates of V-optimal design express the objective

function as an integral over a region of interest. We believe

that selection of a set of discrete points in the operating

space and incorporating the corresponding sensitivity

information in Zint is a more intuitive and less computa-

tionally intensive approach, which is better suited to

modeling of polymerization reactors and other chemical

processes. The V-optimal optimization had similar diffi-

culties with local minima as the D- and A- optimization

problems. The results for the V-optimal designs are

summarized in Table 6. As expected, initial guesses 1 and
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Table 5. Points of interest used to determine the elements of Zint.

Temperature H2 / C2 C4 / C2 C6 / C2

-C

100 0.4 0 0.15

105 0.4 0 0.1

110 0.4 0 0.05

90 0.6 0.25 0

90 0.6 0.15 0

100 0.6 0 0.05

100 0.6 0 0.1

115 0.2 0 0.01

90 0.6 0 0.25

110 0.2 0.1 0

Table 6. V-optimal design of experiments. The most V-optimal design is in bold.

Set J Run Initial Conditions V-optimal Runs

Temp (-C) H2/C2 C4/C2 C6/C2 Temp (-C) H2/C2 C4/C2 C6/C2

1 8.15 1 100 0.4 0 0.15 100 0.6 0 0.28

2 105 0.4 0.1 0 112 0.6 0.12 0

3 115 0.2 0 0.01 114 0.6 0 0.1

4 90 0.6 0.25 0 80 0.6 0.3 0

2 8.15 1 101 0.41 0 0.16 100 0.6 0 0.28

2 106 0.39 0.09 0 112 0.6 0.12 0

3 114 0.21 0 0.009 114 0.6 0 0.1

4 91 0.59 0.24 0 80 0.6 0.3 0

3 12.07 1 80 0.1 0 0.01 80 0.1 0.3 0

2 80 0.6 0 0.3 80 0.1 0 0.3

3 120 0.1 0.01 0 120 0.1 0 0

4 120 0.6 0.02 0 115 0.6 0.08 0

4 8.65 1 105 0.4 0 0.1 114 0.6 0 0.1

2 105 0.4 0 0.15 99 0.6 0 0.28

3 105 0.4 0.1 0 113 0.6 0.11 0

4 105 0.4 0.15 0 111 0.6 0.13 0

5 12.32 1 100 0.4 0.15 0 113 0.6 0.11 0

2 105 0.4 0.1 0 115 0.6 0.08 0

3 115 0.2 0.01 0 111 0.1 0.13 0

4 90 0.6 0.25 0 80 0.6 0.3 0

6 8.35 1 100 0.4 0 0.15 114 0.6 0 0.1

2 105 0.4 0 0.1 116 0.6 0 0.08

3 115 0.2 0 0.01 110 0.1 0 0.14

4 90 0.6 0 0.25 98 0.6 0 0.3

10 7.72 1 102.5 0.1 0 0.1 98 0.6 0 0.3

2 88.53 0.5 0.2 0 80 0.6 0.3 0

3 105 0.1 0 0.069 113 0.6 0 0.11

4 105 0.5 0 0.069 115 0.6 0 0.09
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2 resulted in the same local optimum. The best local

optimum obtained (from 2 out of 118 initial guesses) is set

10. This design has one butene run and three hexene runs.

Unlike the D- and A-optimal designs, the V-optimal

design does not contain any homopolymerization runs.

This result is not surprising because no homopolymeriza-

tion runs were specified in the points of interest in Table 5.

V-optimality focuses on improving model predictions at the

points of interest, and it seems that information from

homopolymerization runs is not crucial for obtaining good

predictions at the operating conditions specified in Table 5.

Of the three criteria considered, V-optimality best matches

the industrially-relevant objectives of this work, that is, to

produce a model that results in good predictions over the

operating region of interest. Table 7 compares the three

optimal designs obtained using the three different optim-

ality criteria. The objective function values JD, JA and JV were

computed for each of three selected designs.

Comparing the JD values for the three designs to the

locally-optimal objective function values shown in Table 3,

reveals that the A- and V-optimal designs are quite good in

the sense of D-optimality. Similarly, the D- and V-optimal

designs in Table 7 have good values of JA (smaller is better),

when compared with the local optima in Table 4. Compar-

ison of the Jv values from Table 7 with the locally optimal

values in Table 6 shows that the D-optimal design is

reasonably good, but that the A-optimal design has worse

V-optimality than any of the local optima in Table 6.

As shown in Table 8, implementation of the D-, A- and V-

optimal designs results in a considerable reduction in the

variance of the model predictions (at operating points of

interest from Table 4). The average prediction variances in

Table 8 were computed using diagonal elements of

Zint ZTZð Þ�1
ZT

int

� �
and variances for MWD and comonomer

incorporation responses. The entries in the first row were

computed using Z¼ Zold, the scaled sensitivity matrix from

the original experiments without any additional runs.

Entries in subsequent rows of Table 8 were calculated by

augmenting this scaled sensitivity matrix with rows

corresponding to the best D-, A- and V-optimal designs.

The average variances in Table 8 indicate that the V-optimal

design will lead to a 35% reduction in the standard error for

prediction of points on the MWD curve and a 30% reduction

in the standard error for comonomer incorporation
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Table 7. Optimality over a large range of conditions. Freq. shows the number of times these experiments were selected out of the 118
different initial guesses. JX is the objective function for the corresponding optimality criterion.

Selection Criterion Freq. JD JA JV Run Temp (-C) H2/C2 C4/C2 C6/C2

D 1 56.3� 1060 3.59 11.05 1 80 0.1 0.3 0

2 120 0.6 0 0

3 80 0.1 0 0.3

4 105.2 0.1 0 0.205

A 1 5.84� 1060 2.71 13.75 1 80 0.15 0.3 0

2 80 0.1 0.3 0

3 110 0.1 0.147 0

4 120 0.6 0 0

V 2 1.78� 1060 4.98 7.72 1 98 0.6 0 0.3

2 80 0.6 0.3 0

3 113 0.6 0 0.11

4 115 0.6 0 0.09

Table 8. Influence of designed experiments on average variances of predictions for MWD responses and comonomer incorporation at the
10 points of interest shown in Table 5.

Design Average prediction

variance for points

on MWD curves

Average prediction

variance for comonomer

incorporation

Original data only 1.98� 10�5 2.68� 10�5

D-optimal 1.22� 10�5 1.57� 10�5

A-optimal 1.56� 10�5 1.23� 10�5

V-optimal 0.84� 10�5 1.31� 10�5
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predictions. Using the best D- and A-optimal designs,

instead, would be expected to improve the standard errors

for predicted MWD points by only 22 and 11%, respectively.

Standard errors for comonomer incorporation predictions

would be reduced by 24 and 32%, respectively. These results

help to confirm that the V-optimal experiments would be

more effective than the D- and A-optimal designs for

improving the predictive ability of the MWD model.

Conclusion

Optimizations were conducted to determine D-, A-, and

V-optimal sequential experimental designs for parameter

estimation in a simplified polyethylene MWD model. Many

local optima were observed because of the nonlinearity of

the system. The results of the optimizations were

dependent on the initial guesses for the experimental

conditions. To address this difficulty, 118 different well-

spaced sets of experimental runs were used as starting

points for the optimization. The best local optima obtained

are reported. It is possible that a different numerical

optimization algorithm would be less susceptible to local

optima. A more robust optimizer is desirable, and it

is recommended that other optimizers should be

investigated to solve the constrained optimization pro-

blems formulated in this article. The best four-run

D-optimal design obtained consisted of one butene run,

two hexene runs and a homopolymerization run. The best

A-optimal design consisted of three butene runs and a

homopolymerization run. The best V-optimal design

consisted of one butene run and three hexene runs. The

V-optimal objective function can be used to compute

average prediction variances for points where good

predictions are desired. Implementation of the four runs

from the best V-optimal design will reduce the average

standard error for predicted points along the MWD curves

by 35%, whereas implementing the D- and A- optimal

experiments will reduce the average standard error by only

22 and 11%, respectively. As a result, we advocate the use of

V-optimal design for obtaining the best possible predictions

from the current MWD model, and for application in other

polymer reactor modeling scenarios. Specification of

discrete points where good predictions are desired is

recommended as an intuitive and computationally simple

method for specifying sequential V-optimal objective

functions, and is recommended over specification of a

region of interest, which requires integration.
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