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a b s t r a c t

Iteratively refined principal differential analysis (iPDA) is a spline-based method for estimating parame-
ters in ordinary differential equation (ODE) models. In this article we extend iPDA for use in differential
equation models with stochastic disturbances and we demonstrate the probabilistic basis for the iPDA
objective function using a maximum likelihood argument. This development naturally leads to a method
for selecting the optimal weighting factor in the iPDA objective function. We demonstrate the effective-
ness of iPDA using a simple two-output continuous-stirred-tank-reactor example, and we use Monte
Carlo simulations to show that iPDA parameter estimates are superior to those obtained using traditional
Parameter estimation
Dynamic models
S
B

nonlinear least squares techniques, which do not account for stochastic disturbances.
© 2008 Elsevier Ltd. All rights reserved.
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. Introduction

Parameter estimation in mathematical models is an important,
ifficult, and ubiquitous problem in chemical engineering and in
any other areas of applied science. Fundamental process mod-

ls can be exploited by many process optimization and control
echnologies (Biegler & Grossman, 2004), but it is important that
ppropriate parameter values are used so that model predictions
atch the underlying process behaviour. Obtaining good parame-

er values requires informative data for parameter estimation, as
ell as reliable parameter estimation techniques.

It is particularly difficult to estimate parameters in ordinary dif-
erential equation (ODE) models. The weighted sum of squared
rediction errors is the usual minimization criterion for parame-
er estimation, and evaluating this criterion requires (numerical)
olution of the ODEs. Sensitivity information, used by gradient-
ased parameter-estimation techniques, requires the solution of
ensitivity equations (Leis & Kramer, 1988) or numerous additional

imulations using perturbed parameter values. Numerical overflow
nd stability problems can arise when poor initial or intermediate
arameter values are used during the course of parameter estima-
ion (Biegler & Grossman, 2004).

∗ Corresponding author. Tel.: +1 613 533 2768; fax: +1 613 533 6637.
E-mail address: kim.mcauley@chee.queensu.ca (K.B. McAuley).
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A variety of ODE parameter estimation techniques have been
sed, ranging from traditional least-squares methods combined
ith repeated solution of differential equations (Bard, 1974; Bates
Watts, 1988; Ogunnaike & Ray, 1994; Seber & Wild, 1989) to
ultiple shooting (Bock, 1981, 1983), collocation-based methods

Biegler, 1984), and algorithms that use spline functions (Vajda &
alko, 1986; Varah, 1982). Biegler and Grossman (2004) provide a
etailed survey of the existing methods.

In an attempt to develop an efficient and easy-to-use algorithm
or estimating parameters in ODE models, Poyton, Varziri, McAuley,

cLellan, and Ramsay (2006) proposed iteratively refined principal
ifferential analysis (iPDA), which builds upon ideas from principal
ifferential analysis (PDA). PDA is a functional data analysis tool
hat was proposed by Ramsay (1996) for empirical modelling using
inear ODEs. PDA makes use of basis functions (usually B-splines)
or estimating ODE parameters (Poyton et al., 2006; Ramsay, 1996;
amsay & Silverman, 2005).

In this paper we will address some of the issues raised by
oyton et al. (2006) regarding iPDA. Most importantly we extend
he use of iPDA to cases in which process noise (unmeasured dis-
urbances that pass through the process) and measurement noise
re both present, and we propose a criterion for selecting opti-

al weighting factors in the iPDA algorithm. We begin with a

rief review of the iPDA algorithm and its advantages and short-
omings. Then we describe how iPDA can be used to estimate
arameters in differential equation models with process distur-
ances (stochastic differential equation models (Maybeck, 1979)).

http://www.sciencedirect.com/science/journal/00981354
mailto:kim.mcauley@chee.queensu.ca
dx.doi.org/10.1016/j.compchemeng.2008.04.005
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inally, we use a simple continuous-stirred-tank-reactor example
o compare parameter estimates obtained using iPDA with those
btained using a traditional nonlinear least squares (NLS) approach
Ogunnaike & Ray, 1994), which does not account for the stochastic
rocess disturbances.

.1. iPDA algorithm

To explain the iPDA algorithm, we will use the following simple
rst-order single-input single-output (SISO) nonlinear ODE model:

ẋ(t) = f (x(t), u(t), �)
x(t0) = x0
y(tmj) = x(tmj) + ε(tmj)

(1)

is the state variable, u is the input variable and y is the output
ariable (which is the same as the state variable in this case). f is a
onlinear function of the vector of model parameters �, state vari-
bles, and input variables. ε is a zero-mean uncorrelated random
ariable with variance �2

m.
The first step in iPDA is to fit a B-spline curve to the observed

ata. This empirical B-spline model is of the form:

∼(t) =
c∑

i=1

ˇi�i (2)

here ˇi, i = 1,. . ., c are B-spline coefficients and �i(t) i = 1,. . ., c are B-
pline basis functions, for which a knot sequence must be specified.
lease refer to Poyton et al. (2006) for a short introduction to B-
plines and to de Boor (2001) for a detailed treatment. Note that
q. (2) can be written in matrix form:

∼(t) = �T (t)� (3)

here �(t) is a vector containing the c basis functions and � is
ector of c spline coefficients. Note that the “∼” subscript is used to
mply an empirical curve that can be easily differentiated:

˙ ∼(t) = d
dt

(
c∑

i=1

ˇi�i(t)

)
=

c∑
i=1

ˇi�̇i(t) = �̇T � (4)

he empirical function x∼(t) is determined by selecting the spline
oefficients � that minimize the following objective function, given
he most recent estimates for the fundamental model parameters
:

in
�

⎧⎨
⎩

n∑
j=1

(y(tmj)−x∼(tmj))
2+�

∫ tmn

t0

(ẋ∼(t)−f (x∼(t), u∼(t), �))2 dt

⎫⎬
⎭

(5)

here n is the number of data points and tmj is the time at
hich the jth data point was measured. We will refer to the
rst term

∑
(y(tmj) − x∼(tmj))

2 in the objective function as SSE
the sum of squared prediction errors) and to the second term

(ẋ∼(t) − f (x∼(t), u∼(t), �))2 dt as PEN (the model-based penalty).
EN is a measure of how well the empirical curve satisfies the
DE model. In the initial iteration of iPDA, initial guesses for the

undamental parameters � are required to compute PEN. Optimal
-spline coefficients � are obtained by considering the measured
bservations and also the extent to which the empirical curve satis-
es the model. The model-based penalty prevents B-spline curves

hat make the SSE small, but are inconsistent with the behaviour of
he fundamental model. The positive weighting factor � determines
ow the empirical B-spline curve balances between matching the
bserved data and satisfying the ODE model. A small � is appropri-
te when we believe the measurements more than the model and

p
g
p
s
i

Fig. 1. iPDA algorithm.

large � is appropriate when we have confidence in our model but
ur measured observations are noisy. Poyton et al. (2006) pointed
ut that proper selection of � is of crucial importance and showed
hat the quality of the B-spline curves (and also the parameter esti-

ates �̂ obtained using iPDA) depends very much on the value
f �. In this paper we propose a means of determining an opti-
al � given some knowledge about measurement noise and model

isturbances.
The second step in iPDA is to estimate the vector of fundamental

odel parameters �̂, using fixed values of the B-spline coefficients
ˆ (and hence fixed x∼) from step one. The fundamental model
arameters are selected to minimize the following objective func-
ion:

in
�

∫ tmn

t0

(ẋ∼(t) − f (x∼(t), u∼(t), �))2 dt (6)

ext, we return to the first step and re-estimate the B-spline coef-
cients using �̂ obtained from step two. iPDA iterates between step
ne and step two until convergence, as shown in Fig. 1.

The original PDA algorithm (Ramsay, 1996) is not iterative, and it
ses penalties on higher-order derivatives (e.g.,

∫
(ẍ(t))2 dt) to pre-

ent over-fitting of the data, instead of the model-based penalty
f iPDA. PDA has been used in various areas such as handwriting
nalysis (Ramsay, 2000), analysis of movement of the lips during
peech (Lucero, 2002; Ramsay & Munhall, 1996), economic mod-
lling (Ramsay & Ramsey, 2002) and meteorological modelling
Ramsay & Silverman, 2005). Poyton et al. (2006) showed that

oor spline fits from the first step of the original PDA algorithm
ive misleading derivative information, which results in inaccurate
arameter estimates from the second step. They showed that inclu-
ion of the model-based penalty in the first step of iPDA, along with
ts iterative nature, eliminates this problem.
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Since
∑

(y(tmj) − x∼(tmj))
2 is constant when �̂ is fixed, step two

f iPDA is equivalent to minimizing:

in
�

⎧⎨
⎩

n∑
j=1

(y(tmj)−x∼(tmj))
2+�

∫
(ẋ∼(t) − f (x∼(t), u∼(t), �))2 dt

⎫⎬
⎭
(7)

s a result, when the estimates for � and � have converged, the
ollowing overall objective function is minimized:

in
�,�

⎧⎨
⎩

n∑
j=1

(y(tmj)−x∼(tmj))
2+�

∫
(ẋ∼(t) − f (x∼(t), u∼(t), �))2 dt

⎫⎬
⎭
(8)

his optimization problem can be solved simultaneously for �
nd �, instead of using the iterative two-step procedure described
bove. Since the vector of spline coefficients, is generally of high
imension, Eq. (8) is the objective function for a large-scale non-

inear minimization problem. One benefit of the crude iterative
pproach shown in Fig. 1 is that it can simplify this large-scale non-
inear problem: If the ODE is linear in the inputs and outputs, then
he first step of iPDA is a large linear least-squares problem, and
he second step of iPDA, which is a nonlinear least-squares prob-
em is of much smaller dimension. Nonetheless, we believe that
lternative approaches for solving large-scale minimization meth-
ds (Biegler, 1984) should be investigated for obtaining the iPDA
arameter estimates.

.2. iPDA advantages, shortcomings and the purpose of current
aper

Since the empirical B-spline curve that is fitted to the obser-
ations can be easily differentiated with respect to time, iPDA
ircumvents the need for repeated numerical solution of ODEs,
hich is required by traditional NLS methods (Ogunnaike & Ray,

994). Solving ODEs numerically during NLS estimation can some-
imes lead to numerical overflow and instabilities, especially when
he initial guesses (or along-the-way estimates) of model param-
ters are poor, or if the dynamic model contains unstable modes
Ascher, Mathheij, & Russell, 1988; Bard, 1974; Li, Osborne, & Pravan,
005; Tanartkit & Biegler, 1995). These problems are not encoun-
ered by iPDA.

Another advantage of iPDA arises from the form of the objec-
ive function for the parameter estimation step (step two). Since
he integral of the squared deviation for the differentiated form
f the model is minimized in Eq. (6), as opposed to the sum of
quared prediction errors as in traditional NLS, sensitivity informa-
ion is readily available. Analytical derivatives can be used because
˙ ∼(t) − f (x∼(t), u∼(t), �) can easily be differentiated with respect to
. So, unlike traditional NLS, there is no need to numerically inte-
rate sensitivity equations (Bard, 1974; Bates & Watts, 1988; Seber
Wild, 1989). Objective function (6) has a further advantage in that

he nonlinearity of parameters is often less severe in the differenti-
ted form of the model than in the integrated solution (e.g., kinetic
ate constants and heat-transfer coefficients often appear linearly
n the right-hand-side of the ODE, but would appear in exponential
erms in the integrated response). Therefore, iPDA may be less sus-
eptible to problems associated with poor initial parameter guesses
han are traditional methods.
iPDA is particularly well suited to parameter estimation in ODE
odels in which some or all of the initial conditions for the states

re unknown (boundary value problems). When using iPDA, there
s no need to repeatedly solve the ODEs with different guesses for
he initial conditions. Estimates for initial conditions are provided

•
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utomatically by x∼(0). As we will show using the examples in
his article, it is straightforward to incorporate known initial con-
itions in the B-spline curve-fitting step by fixing the value of one
f the spline coefficients. Parameter estimation problems involving
tate-variable constraints (Biegler & Grossman, 2004) could also be
eadily handled using iPDA.

Using basis functions, either to empirically fit the observations
r to approximate the solution of the ODEs (collocation-based
ethods), during parameter estimation, is not exclusive to iPDA

e.g., Benson, 1979; Biegler, 1984; Logsdon & Biegler, 1992; Swartz &
remermann, 1975; Tang, 1971; Vajda & Valko, 1986; Varah, 1982).
everal types of basis functions have been used for discretizing ODE
odels during parameter estimation (Biegler & Grossman, 2004).

or example, Biegler (1984) used Lagrange interpolating polyno-
ials because they facilitate providing bounds and starting points

or coefficients that are to be estimated. B-spline functions were
elected for our iPDA algorithm (and for original PDA) because they
re bounded polynomials that are non-zero only over a finite inter-
al. B-splines provide “compact support” for the empirical curve
de Boor, 2001), which leads to banded matrices that are numeri-
ally attractive for smoothing and inverse problems (Eilers & Marx,
996; O’Sullivan, 1986; Ramsay & Silverman, 2005).

A further benefit of iPDA over other basis-function methods is
hat the model-based penalty (PEN) in the B-spline fitting objec-
ive function (Eq. (5)) regularizes the fitted curve and prevents
t from having unrealistic features that are not consistent with
he model. Because of this property, iPDA is an algorithm in the
lass of regularization methods, which are widely used for solv-
ng linear and nonlinear inverse problems (Binder, Blank, Dahmen,

Marquardt, 2002; Kirsch, 1996; O’Sullivan, 1986). Note that the
odel-based penalty (PEN) in iPDA is not a hard constraint, but

ather a soft constraint that is only satisfied to some extent, which
s determined by the value of the weighting factor �. In other
ollocation-based methods the parameter estimation problem is
osed as a hard-constrained minimization problem, where the sum
f squared prediction errors (SSE) is minimized subject to the dis-
retized ODE (Biegler & Grossman, 2004). As suggested by Poyton
t al. (2006), imposing the discretized ODE as a soft constraint in
PDA may be particularly advantageous for estimating parameters
n models in which unmeasured stochastic disturbances influence
ynamic process behaviour. In this paper we consider these types
f models and we demonstrate how iPDA readily addresses the
esulting parameter estimation problem.

Another issue raised by Poyton et al. (2006) is whether or not
PDA can be used for problems in which some of the states are
ot measured. Our recent investigations confirm that the answer

s yes; iPDA can readily handle estimation problems with unmea-
ured states so long as certain observability conditions are met
Varziri, 2008), which are analogous to the conditions required for
stimation of unmeasured states using an extended Kalman filter.

Shortcomings of iPDA as listed by Poyton et al. (2006) are as
ollows:

iPDA requires an appropriate B-spline knot sequence. The quality
of the parameter estimates �̂ depends on the empirical B-spline
curve which, in turn, relies on the selected knot sequence.
Optimal knot placement is currently under investigation in our
research work. However, it seems that if enough data points are
available, placing one knot at each observation point (as will be
shown in the case study) can lead to satisfactory results. Addi-

tional knots maybe required when there are sharp changes in
the output. Using too many knots can lead to long computational
times.
iPDA parameter estimates depend on the weighting factor � in
Eq. (5). Heuristically, the weighting factor should depend on
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measurement uncertainties and model disturbances. The more
uncertain the measurements are, the larger � should be and
the more uncertain the model is, the smaller � should be. The
uncertainty in the model (due to unmodeled disturbances or
other model imperfections) can have several sources. One pos-
sible source of model disturbances is uncertainty in the inputs to
the system. Traditional NLS assumes that the inputs to the sys-
tem are perfectly known, however in practice, due to flaws in
measurement devices and valves and also because of external
unmeasured or unmodeled disturbances, this is rarely the case.
Finally, model uncertainty arises because there are some phys-
ical phenomena that have not been included in the model; in
other words there may be missing or improperly specified terms
in the model. In the current article we add a stochastic term to
the right-hand-side of the ODE in Eq. (1) to account for model
uncertainties. We then show that minimizing the objective func-
tion in Eq. (5) leads to optimal B-spline coefficients for smoothing
the observations, taking into account the levels of process noise
and measurement noise in the system. This development natu-
rally leads to an expression for the optimal value of the weighting
factor �.
No confidence interval expressions have been developed to assist
modelers in making inferences about the quality of parameter
estimates and model predictions obtained using iPDA. We will
address this issue in our ongoing iPDA research. Also, iPDA has
not yet been used for parameter estimation in larger-scale param-
eter estimation problems. Further research will be required to
determine efficient algorithms for obtaining iPDA parameter esti-
mates.

. iPDA in presence of model disturbance

To keep the notation compact we use a single-input single-
utput (SISO) nonlinear model; the multi-input multi-output
MIMO) case is presented in Appendix A.

Consider the following continuous-time stochastic dynamic
odel (Astrom, 1970; Brown & Hwang, 1992; Maybeck, 1979):

ẋ(t) = f (x(t), u(t), �) + �(t)

x(t0) = x0

y(tmj) = x(tmj) + ε(tmj)

(9)

he initial condition, x0 is a normally distributed random vari-
ble with mean E{x0} and variance �2

0 . �(t) is a continuous
ero-mean stationary white-noise process with covariance matrix
{�(t)�(t + �)}= Qı(�), where Q is the corresponding power spectral
ensity and ı(.) is the Dirac delta function. For the discrete-time
hite-noise process (Maybeck, 1979):

{�(j1 �t)�(j2 �t)} =

⎧⎨
⎩

Q

�t
j1 = j2

0 j1 /= j2

(10)

here j1 and j2 are integers and �t is the sampling period. A dis-
rete random white noise sequence as shown in Fig. 2 is a series of
tep functions with sampling interval �t, where the variance of the
hite noise, �2

p = Q/�t. In the limiting case where �t → 0 we get
he same behaviour as in the continuous case (using the Dirac delta
unction). All the other terms in (9) remain the same as those in (1).
e also assume that the process noise �(t) and the measurement
oise ε(t) are not correlated. In the next section we use Bayesian
rguments to justify the use of the B-spline-fitting objective func-
ion in (5) and we prescribe a method for selecting an optimal �
iven Q and �2

m.

D
1

p

Fig. 2. Process disturbance.

.1. Selecting the optimal weighting factor

We will show that

opt = �2
m

Q
(11)

here the subscript “opt” indicates the optimal weighting factor,
hich will lead to maximum likelihood parameter estimates for �,

iven �. The resulting optimal spline curves x∼ will lead to optimal
alues of �̂ (the estimate of �) after the algorithm converges.

Before we begin the mathematical derivations, it is helpful to
utline the approach that we will use. The state variable x in (9) is a
andom variable (due to the stochastic input �(t)), which evolves in
ime. Values of x, sampled at various times, have a prior joint distri-
ution, which is multivariate normal due to the assumptions about
(t). Once the measured data become available, the posterior joint
istribution of the sampled values of x and the measured response,
, can be obtained. We will consider the general case when the ini-
ial value x0 is not perfectly known, and then we will demonstrate
hat maximizing the likelihood of the joint distribution of the sam-
led state values and measured observations given the parameter
alues, is equivalent to minimizing the iPDA objective function (5)
n the restricted case when we assume that x0 in (9) is perfectly
nown.

At the discrete time ti = ti−1 + �t, where the sampling interval �t
s small, Eq. (9) can be written using the following Euler approxi-

ation:

(ti−1 + �t) = x(ti) = x(ti−1) + f (x(ti−1), u(ti−1), �)�t + �(ti−1)�t

(12)

onsider x(ti) at q + 1 uniformly spaced time points, ti, i = 0,. . ., q so
hat q�t = T, where T = tq − t0 is the overall time span for the model
redictions. For brevity, we define xi = x(ti). Please note that the set
f times at which the measurements are available is a subset of

i (i = 0,. . ., q) and is denoted by tmj (j = 1,. . ., n). The measurement
imes tmj do not need to be uniformly spaced. The vector of out-
uts at observation times y(tmj) (j = 1,. . ., n) and its corresponding
tate vector of true values x(tmj) (j = 1,. . ., n) and measurement noise
ector ε(tmj) (j = 1,. . ., n) are denoted by ym, xm, and �m, respectively.

From Bayes’ rule, the joint probability density of x0,. . ., xq given
he vector of observations ym can be written as

(x0, . . . , xq, ym|�) = p(ym|x0, . . . , xq, �) × p(x0, . . . , xq|�) (13)
ue to the Markov property (Gong, Wahba, Johnson, & Tribbia,
998; Maybeck, 1979):

(x0, . . . , xq|�) = p(xq|xq−1, �) × · · · × p(x1|x0, �) × p(x0|�) (14)



emica

S

p

y

y

w
t
t

p

w
c

p

w

E

W

p

T

p

T
x

w
m

i

a

I
(
s
e

∑

E
fi
o
t
�

∑

w
w
n

�

I
m
s
t
r
m
1

i
�
t
t
a
m
i

t
f
s
o⎧⎪⎪⎨
⎪⎪⎩
F

x

M.S. Varziri et al. / Computers and Ch

ubstituting (14) into (13) gives:

(x0, . . . , xq, ym|�) = p(ym|x0, . . . , xq, �) × p(xq|xq−1, �) × · · ·
×p(x1|x0, �) × p(x0|�) (15)

We now evaluate each term on the right-hand-side of (15). From:
(tmj) = x(tmj) + ε(tmj)

m = xm + �m (16)

here xm is the vector of true state values at the measurement
imes. Therefore, p(ym|x0,. . ., xq, �), is a multivariate Gaussian dis-
ribution:

(ym|x0, . . . , xq, �) = 1

(2	)n/2�n
m

exp

{
−(ym − xm)T (ym − xm)

2�2
m

}
(17)

ith mean E{ym|x0,. . ., xq, �}= xm and covariance matrix,
ov
{

ym|x0, . . . , xq

}
= �2

mIn×n.
From, Eq. (12), p(xi|xi−1) is a Gaussian distribution:

(xi|xi−1, �) = 1
√

2	
√

Q �t
exp

{
−(xi − E{xi|xi−1, �})2

2Q �t

}
(18)

ith

{xi|xi−1, �} = xi−1 + f (xi−1, ui−1, �)�t and

cov{xi|xi−1, �} = cov{�i−1 �t} =
(

Q

�t

)
�t2 = Q �t (19)

e assume that the initial condition x0 has a Gaussian distribution:

(x0|�) = 1√
2	�0

exp

{
−(x0 − E{x0|�})2

2�2
0

}
(20)

herefore, from Eqs. (15), (17), (18), and (20):

(x0, . . . , xq, ym|�) = exp

{
−(ym − xm)T (ym − xm)

2�2
m

}

×
q∏

i=1

exp

{
−(xi − E{xi|xi−1, �})2

2Q�t

}

×exp

{
−(x0 − E{x0|�})2

2�2
0

}
(21)

he optimal state and parameter estimates are denoted x̂ =
ˆ0, . . . , x̂q and �̂, respectively and minimize:

(ym − xm)T (ym − xm)

�2
m

+
q∑

i=1

1
Q

(
xi − E{xi|xi−1, �}

�t

)2

�t

+ (x0 − E{x0|�})2

�2
0

(22)

hich is the natural logarithm of the right-hand-side of Eq. (21)
ultiplied by −1.
In the limiting case where �t → 0 (Jazwinski, 1970), Eq. (19)

mplies

xi − E{xi|xi−1, �}
�t

→ ẋi−1 − f (xi−1, ui−1, �) (23)

nd assuming that E{x0|�}= E{x0} Eq. (22) becomes

(ym − xm)T (ym − xm)

�2
m

+ 1
Q

∫ tq

t0

(ẋ(t) − f (x(t), u(t), �))2 dt
+ (x0 − E{x0})2

�2
0

(24)
E
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f the initial condition x0 is perfectly known, the last term in Eq.
24) vanishes. If we assume that x(t) can be approximated by B-
pline curves so that x(t) ∼= x∼(t) = �T(t)�, then minimizing (24) is
quivalent to minimizing:

n

j=1

(y(tmj) − x∼(tmj))
2 + �2

m

Q

∫ tq

t0

(ẋ∼(t) − f (x∼(t), u(t), �))2 dt

(25)

q. (25) is the same as the iPDA objective function for B-spline
tting, Eq. (5), with � = �2

m/Q . As a result, we have shown that
ptimal B-spline coefficients, which result in x∼ approximating the
rue curve for x, are obtained using the iPDA weighting coefficient
opt = �2

m/Q .
If the integral in (25) is approximated by discrete sums:

n

j=1

(y(tmj) − x∼(tmj))
2 + �2

m

�2
p

q∑
i=1

(ẋ∼(ti) − f (x∼(ti), u(ti), �))2

+ �2
m

�2
0

(x0 − E{x0})2 (26)

here �2
p = Q/�t is the process noise variance, so that the optimal

eighting factor using a discretized model and discrete process
oise is

opt–discrete = �2
m

�2
p

(27)

f the modeler has knowledge about �2
m from replicate measure-

ents of the outputs, and about �2
p from uncertainties in input

ettings, and the types and magnitudes of anticipated disturbances,
hen a reasonable value of � can be selected. The information
equired for optimal selection of � is analogous to the infor-
ation required to tune a Kalman filter (Gagnon & MacGregor,

991).
Traditional NLS parameter estimation corresponds to optimiz-

ng the iPDA objective function in (8) in the limiting case when
→ ∞, because traditional NLS methods assume that �2

p = 0. In
his case, the B-spline curve tends to satisfy the differential equa-
ion model perfectly (assuming there are sufficient spline knots)
nd the fundamental parameter estimates, and the SSE is mini-
ized through optimal selection of �̂ (which influences x∼ as the

terations proceed.
In Appendix A, we extend these results to the general mul-

ivariate case. To illustrate what happens to the iPDA objective
unction in a simple multivariate estimation problem, we con-
ider the following nonlinear dynamic system with two measured
utputs:

ẋ1(t) = f1(x1(t), x2(t), u1(t), u2(t), �) + �1(t)

ẋ2(t) = f2(x1(t), x2(t), u1(t), u2(t), �) + �2(t)

y1(tm1j) = x1(tm1j) + ε1(tm1j)

y2(tm2j) = x2(tm2j) + ε2(tm2j)

(28)

or this system, the matrices defined in Eq. (36) of Appendix A are

(t) =
[

x1(t)
x2(t)

]
, F =

[
f1
f2

]
, u(t) =

[
u1(t)
u2(t)

]
, C =

[
1 0
0 1

]
,

=
[

�2
m1 0

0 �2
m2

]
, and Q =

[
Qp1 0
0 Qp2

]
.



3 emica

T
(

w
o
f
d
i
i
t
t
t
B
v
(
o
c
i

w

�

S
t
P
t
o
c
i
d
(

c
p
t
c
S
i
P

3

w
p

n
a
n
s
2
&
b
p
M
p

3

P
m

w
A
c
i
v
c

2

i

l

s
p
e
t

W
t
F
a
t
s
c
t
c
t
i
i

c
c

016 M.S. Varziri et al. / Computers and Ch

he resulting iPDA objective function for optimal spline fitting
from Eq. (47) in Appendix A) is:

1

�2
m1

N1∑
j=1

(y1(tm1j) − x∼1(tm1j))
2 + 1

�2
m2

N2∑
j=1

(y2(tm2j) − x∼2(tm2j))
2

+ 1
Qp1

∫
(ẋ∼1(t) − f1(x∼1(t), x∼2(t), u1(t), u2(t), �))2 dt

+ 1
Qp2

∫
(ẋ∼2(t) − f2(x∼1(t), x∼2(t), u1(t), u2(t), �))2 dt (29)

here N1 and N2 are the number of available measurements for
utputs y1 and y2, respectively. This multivariate iPDA objective
unction readily accommodates outputs that are measured using
ifferent sampling rates and measurements that are made using

rregularly spaced sampling times. The two SSE terms that appear
n this objective function are each weighted by the reciprocal of
he variance for their respective measurements. The objective func-
ion also contains two PEN terms corresponding to the integral of
he squared deviations in the two stochastic differential equations.
ecause the development in Appendix A assumes that the noise
ariables �1(t) and �2(t) are independent, no cross-product term
involving both ẋ1 and ẋ2) appears in the objective function. Each
f the PEN terms is weighted by reciprocal of its respective pro-
ess noise variance, which becomes more readily apparent if the
ntegrals are approximated by sums:

1

�2
m1

N1∑
i=1

(y1(tmi) − x∼1(tmi))
2 + 1

�2
m2

N2∑
i=1

(y2(tmi) − x∼2(tmi))
2

+ 1

�2
p1

q∑
i=0

(ẋ∼1(ti) − f1(x∼1(ti), x∼2(ti), u1(ti), u2(ti), �))2

+ 1

�2
p2

q∑
i=0

(ẋ∼2(ti) − f2(x∼1(ti), x∼2(ti), u1(ti), u2(ti), �))2 (30)

here

2
p1 = Qp1

�t
and �2

p2 = Qp2

�t
.

ince each SSE term in the objective function is inversely propor-
ional to its corresponding measurement error variance and each
EN term is inversely proportional to its corresponding model dis-
urbance variance, it is straightforward to write an appropriate iPDA
bjective function for any multivariate problem. The main diffi-
ulty lies in obtaining estimates for these variances (or their ratios)
n cases where all that is available is a dynamic model and some
ata. We are hopeful that the literature on tuning of Kalman filters
Maybeck, 1979) will provide some insight into this problem.

Objective functions in (29) and (30) reveal how iPDA can be
onducted when some of the states are unmeasured. For exam-
le, if no measurements are available for output y1 so that N1 = 0,
he first term in the objective functions disappears, and the spline
urves x1∼ and x1∼ are fitted simultaneously using the remaining
SE term and the two PEN terms (Varziri, 2008). Then, step 2 of the
PDA algorithm involves selecting � to minimize the sum of the two
EN terms (Varziri, 2008).
. Case study

In this case study we test our results for optimal selection of
eighting factors in the iPDA objective function using two exam-
les: a linear SISO continuous stirred tank reactor (CSTR), and a

c
t
l
t
s
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onlinear MIMO CSTR. Note that we have also demonstrated the
pplicability of iPDA to more complicated problems including a
onlinear CSTR in which unmeasured states and nonstationary
tochastic disturbances are present (Varziri, McAuley, & McLellan,
008), and a nylon polymerization reactor model (Varziri, McAuley,
McLellan, submitted for publication-b). The algorithm has also

een extended so that it can be applied to cases in which the
rocess disturbance intensity, Q, is unknown (Varziri, McAuley, &
cLellan, submitted for publication-a; Varziri et al., submitted for

ublication-b).

.1. Linear SISO CSTR

First, we use a simple linearized continuous CSTR example from
oyton et al. (2006), with a stochastic term �(t) added to the original
odel:

dC ′
A(t)
dt

= wCC ′
A(t) + wT T ′(t) + �(t)

C ′
A(0) = 0

y(tmj) = C ′
A(tmj) + ε(tmj)

(31)

here C ′
A = CA − CAs and T = T − Ts are the concentration of reactant

and the temperature, respectively, in deviation variables. The dis-
rete process disturbance �(t) used in our simulations (see Fig. 2)
s a series of random step inputs whose duration (�t = 0.1 min) is
ery short compared to the simulation time (24 min) and the pro-
ess time constant. For this disturbance sequence in Fig. 2, �2

p =
× 10−3(kmol/m3/min)

2
. The measurement noise ε(tmj) j = 1,. . ., n

s a white noise sequence with variance �2
m = 4 × 10−4(kmol/m3)

2
.

The stochastic differential equation in Eq. (31) was obtained by
inearizing the following nonlinear stochastic differential equation:

dCA

dt
= F

V
(CA0 − CA) − kref exp

(−E

R

(
1
T

− 1
Tref

))
CA + �(t) (32)

o the coefficients wC and wT in (31) depend on the unknown
arameters kref (a kinetic rate constant) and E/R (an activation
nergy parameter), as well as the steady-state operating condi-
ions:

wC = −Fs

V
− kref exp

(
− E

R

(
1
Ts

− 1
Tref

))
wT = −kref

E

R

CAs

T2
s

exp
(

− E

R

(
1
Ts

− 1
Tref

)) .

e assume that kref = 0.461 min−1 and E/R = 8330.1 K are the
rue values of the parameters, that the feed rate is steady at
s = 0.05 m3 min−1, the inlet reactant concentration CA0 is constant
t 2.0 kmol m−3, the reactor volume is V = 1.0 m3 and the reference
emperature is Tref = 350 K. When the reactor is operated at a con-
tant temperature, Ts = 332 K, the resulting (expected) steady-state
oncentration of reactant A is CAs = 0.567 kmol m−3. We assume that
he initial concentration in the reactor is CAs and that this initial
oncentration is known to the modeler. We also assume that the
emperature control system is very effective, so that step changes
n the temperature set point result in instantaneous step changes
n the reactor temperature.

The parameters kref and E/R were estimated using the step
hange in temperature shown in Fig. 3, which produces the con-
entration response shown in Fig. 4. The true response of the

oncentration (obtained using the true parameter values and the
rue stochastic disturbance sequence �(t)) is shown as the dashed
ine in Fig. 4. The noisy measurements (241 equally spaced concen-
ration measurements, with 10 measurements per minute) and the
pline fit CA∼(t) are also shown.
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Fig. 3. Input signal.

The objective function used to fit CA∼(t) was:

241

j=1

(CA(tmj) − CA∼(tmj))
2

+�

∫ t=24

t=0

(
dC ′

A∼(t)
dt

− wCC ′
A∼(t) − wT T ′(t)

)2

dt (33)

here CA∼(t) is the B-spline fit and the optimal value of � is
opt = �2

m/Q = �2
m/�2

p �t = 2.0 min (from Eq. (11)). In our objec-
ive function evaluations, we approximated the integral in Eq. (33)
y discrete sums with �t = 0.1 min, so that �opt–discrete = �2

m/�2
p =

.2 min2. In our simulations of the true response, we solved the
inearized stochastic differential equation model using a Runge-
utta method (ODE 45 in Simulink with relative tolerance 1E−3
nd automatic absolute tolerance). In our subsequent example, the

rue plant is a more realistic nonlinear CSTR.

We obtained optimal parameter values in two different ways:
i) using the iterative procedure shown in Fig. 1 iPDA and (ii) by
imultaneously estimating the combined vector of two fundamen-
al model parameters and B-spline coefficients � = [�′, �′]′ in Eq.

ig. 4. Measured, true, and fitted responses for the linear SISO CSTR model obtained
sing iPDA with �opt–discrete = 0.2 min2. (�, simulated data; - - -, response of the sys-
em with true parameters and true stochastic noise; —, iPDA response).

b
f
t
W
a
i
t
t
K

t
f
a
i
5
o
w
o
s
E
a
p

w
u
a
r

ig. 5. Observed, true, and predicted response for NLS, linear SISO CSTR (�, sim-
lated data; - - -, response of the system with true parameters and true stochastic
oise; —, NLS response).

33) using “lsqnonlin” routine in Matlab. The parameter estimates
rom the simultaneous approach were on average better than the
terated method and hence preferred. When fitting the B-splines

e used one knot at each observation time. We found that due
o the stochastic disturbance, using coincident knots at the time
hen the step change in T occurred did not improve the overall fit

o the observed data. Another reason is that placing one knot at each
bservation point in this example provides B-spline curves that are
exible enough to fit the observed data. The effect of coincident
nots is more obvious when fewer knots are used.

Using the simulated data shown in Fig. 4, model parameters
ere also estimated using traditional nonlinear least squares esti-
ation (ODE 45 in Simulink was used to repeatedly solve the ODE
odel with �(t) = 0 and the associated sensitivity equations). The

tted response is shown along with the data and the true process
ehaviour in Fig. 5. Note that the fitted model response obtained
rom traditional NLS is much further from the true response curve
han is the iPDA state response curve CA∼(t), which is shown in Fig. 4.

hen iPDA is used for parameter estimation, two options are avail-
ble for estimating (or smoothing) the state values. One possibility,
s to use the iPDA parameter estimates, �̂, in the model and solve
he differential equations numerically, ignoring the stochastic dis-
urbance. The other way is to use x∼(t) as a state estimate (like a
alman smoother) as is shown in Fig. 4.

To compare the parameter estimates obtained using iPDA and
raditional NLS, and to examine the effect of the iPDA weighting
actor on the quality of the parameter estimates, parameters kref
nd E/R were estimated using iPDA with three different weight-
ng factors (0.1�opt, �opt, 10�opt) as well as traditional NLS, for
0 simulated data sets. The initial parameter guesses were 50%
f the true parameter values. iPDA (NLS) iterations were stopped,
hen the change in ||�|| (||�|| in case of NLS) was less than 1E−12,

r if a maximum of 1000 iterations was reached. Figs. 6 and 7
how the corresponding box plots for the estimates of kref and
/R, respectively. Both iPDA and traditional NLS produced good
nd comparable estimates. iPDAopt (iPDA with �opt) gave the most
recise estimates.

When � = 10�opt was used, the iPDA parameter estimates

ere closer to those obtained traditional NLS than the estimates
sing � = �opt. This result was expected, because traditional NLS
ssumes that �(t) can be neglected because �2

p → 0, which cor-
esponds to very large �. When we attempted iPDA estimation
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Fig. 6. Box-plots for kref using NLS and iPDA linear SISO CSTR.

ith very large weighting factors (e.g., �opt–discrete = 100 min2)
he iterations stopped before reaching the NLS parameter esti-

ates. Unfortunately, the spline knot sequence that we specified
as too coarse for the empirical B-spline curve to be able

o solve the ODE arbitrarily well. As a result, the PEN term∫
((dC ′

A∼(t)/dt) − wCC ′
A∼(t) − wT T ′(t))2 dt in the iPDA objective

unction was not able to approach zero, and remained large, rel-
tive to the SSE term. We anticipate that a large number of spline
nots (and perhaps long computational times) will be required to
btain accurate iPDA parameter estimates using very large values of
. This is not a serious problem for modelers, because in situations
here a large � is appropriate, traditional NLS or collocation-based
ethods provide good parameter estimates, and iPDA would not be

articularly beneficial. We advocate that iPDA be used in situations
here there are significant process disturbances, uncertainties in

nput variables, or an imperfect or simplified ODE model, so that tra-
itional least-squares assumptions do not apply. In such situations,
ery large values of � are not required. To confirm that we had used
sufficient number of spline knots to obtain good iPDA parame-

er estimates for our stochastic CSTR problem, we re-estimated the
arameters using twice as many spline knots and obtained almost
xactly the same results.
To confirm that iPDA becomes even more beneficial when there
re significant process disturbances, we generated additional sim-
lated data sets using the same measurement noise variance as in
ig. 4, but 10 times the amount of process noise variance (making

Fig. 7. Box-plots for E/R using NLS and iPDA, linear SISO CSTR.
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he optimal choice of � 10 times smaller). As expected, because of
he larger process noise, both iPDA and traditional NLS parameter
stimates worsened, but the traditional NLS parameter estimates
eteriorated more than iPDA parameter estimates.

.2. Nonlinear MIMO CSTR

The second case study is a non-isothermal CSTR. The model
quations consist of material and energy balances (Marlin, 2000)
ith additional stochastic terms:

dCA(t)
dt

= F(t)
V

(CA0(t) − CA(t)) − g(T(t))CA(t) + �1(t)

dT(t)
dt

= F(t)
V

(T0(t)−T(t))+ˇ1(T(t)−Tcin(t)) + ˇ2g(T(t))CA(t) + �2(t)

CA(0) = 1.569 (kmol m−3)

T(0) = 341.37 (K)

y1(ti) = CA(ti) + ε1(ti)

y2(tj) = CA(tj) + ε2(tj)

g(T) = kref exp
(

− E

R

(
1
T

− 1
Tref

))
,

ˇ1(Fc) = − aFb+1
c

V
Cp(Fc + (aFb
c /2
cCpc))

, ˇ2 = −�Hrxn


Cp

(34)

{�1(ti)�1(tj)} = �2
p1ı(ti − tj), E{�2(ti)�2(tj)} = �2

p2ı(ti − tj),

1(tmj)j = 1, . . . , N1 and ε2(tmj)j = 1, . . . , N2 are white-noise
equences with variances �2

m1 and �2
m2, respectively. We also

ssume that �1, �2, ε1, and ε2 are independent.
This stochastic differential equation model is nonlinear in the

tates (CA, T) and parameters and does not have an analytical solu-
ion.

As in the previous example, CA is the concentration of the
eactant A, T is the reactor temperature, V is the volume and
ref = 350 K is the reference temperature. The parameters to be esti-
ated and their true values are the same as those of the SISO

ase study: E/R = 8330.1 K, kref = 0.461 min−1. The initial parameter
uesses were set at 50% of the true parameter values. This nonlinear
ystem has five inputs: the reactant flow rate F, the inlet reac-
ant concentration CA0, the inlet temperature T0, the coolant inlet
emperature, and the coolant flow rate Fc. Parameters a = 1.678E6,
= 0.5 which we assume to be known from previous heat-transfer
xperiments, account for the effect of Fc on the heat-transfer coef-
cient. Values for the various other known constants (Marlin,
000) are as follows: V = 1.0 m3, Cp = 1 cal g−1 K−1, 
 = 1E6 g m−3,
pc = 1 cal g−1 K−1, 
c = 1E6 g m−3, and −�Hrxn = 130E6 cal kmol−1.
he initial steady-state operating point is: CAs = 1.569 kmol m−3 and
s = 341.37 K. The linear SISO case study used a simplified form of
his model that assumed perfect temperature control.

In this example, there is no temperature controller, and pertur-
ations are introduced into each of the five inputs using the input
cheme shown in Fig. 8 (Poyton, 2005). Each input consists of a step
p, followed by a step down back to the steady-state point.

We assume that concentration can be measured once per minute
nd temperature can be measured once every 0.3 min. The dura-
ion of the simulation is 64 min, so that there are 64 concentration

easurements and 213 temperature measurements. The noise vari-
nces for the concentration and temperature measurements are
2 = 4 × 10−4 (kmol/m3)

2
and �2 = 6.4 × 10−1 K2, respectively.
m1 m2

he corresponding process noise intensities are Qp1 = 4 × 10−3

kmol/m3)2/min and Qp2 = 4 K2/min. Since �2
p1 = Qp1/�t and �2

p2 =
p2/�t, for �t = 1 min the corresponding process noise variances

re �2
p1 = 4 × 10−3 (kmol/m3/min)

2
and �2

p2 = 4 (K/min)2.
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Fig. 9. Box-plots for kref using NLS and iPDA nonlinear MIMO CSTR.

Fig. 10. Box-plots for E/R using NLS and iPDA nonlinear MIMO CSTR.
Fig. 8. Input scheme for MIMO nonlinear CSTR.

From Eq. (29), the iPDA objective function is:
64

j=1

(CA(tm1j) − CA∼(tm1j))
2

+�1

∫ 64

t=0

(
dCA∼(t)

dt
− F(t)

V
(CA0(t) − CA∼(t)) + g(T∼(t))CA∼(t)

)2

dt

+
213∑
j=1

(T(tm2j) − T∼(tm2j))
2

+�2

∫ 64

t=0

(
dT∼(t)

dt
− F(t)

V
(T0(t) − T∼(t)) − ˇ1(T∼(t) − Tcin(t))−ˇ2g(T∼(t))CA∼(t)

)2

dt

(35)

rom (11), the optimal weighting factors in this case are �1 = 0.1 min
nd �2 = 0.16 min. We used two different knot sequences to fit B-
pline curves to concentration and temperature observations, with
he knots placed at observation times. Again, we obtained optimal
arameter values using the iterative procedure shown in Fig. 1 iPDA
nd also by simultaneously estimating the B-spline coefficients
long with the two parameters in Eq. (35) using “lsqnonlin” routine
n Matlab. However, in this example the simultaneous approach
roved to be much slower (due to the existence of two states and
onsiderably fewer concentration observations), so that the itera-
ive approach was preferred. To compare the sampling behaviour of
he iPDA and NLS parameter estimates, 50 sets of concentration and
emperature measurements were generated using different mea-
urement and process noise sequences. Gaussian quadrature was
sed to calculate the integrals in Eq. (33). Box-plots for the param-
ter estimates are shown in Figs. 9 and 10. Both iPDA and traditional
LS produced reasonable estimates; the iPDA parameter estimates
re better, on average, than the traditional NLS estimates.

The iPDA and NLS predicted responses are compared against the
rue responses in Figs. 11–14. The iPDA predicted responses closely
ollow the true trajectories.

. Summary and conclusions

Parameters were estimated in differential equation models with

tochastic disturbances using iPDA. By considering the joint proba-
ility density of the states and observations, given the parameters,
e demonstrated that optimal model parameters and B-spline

oefficients can be obtained by minimizing the iPDA objective
unction. We also demonstrated that the optimal value of the

Fig. 11. Observed, true, and predicted concentration response for iPDA for the non-
linear MIMO CSTR example (�, simulated data; - - -, response of the system with
true parameters and true stochastic noise; —, iPDA response).
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ig. 12. Measured, true, and predicted concentration responses using NLS for the
onlinear MIMO CSTR example (�, simulated data; - - -, response of the system with
rue parameters and true stochastic noise; —, NLS response).

eighting factor � is proportional to the measurement noise
ariance, and inversely proportional to the model disturbance
ariance, so that tuning the weighting factor in iPDA resem-
les tuning the Kalman gain in Kalman filtering applications.
or parameter estimation in MIMO dynamic models, the overall
PDA objective function includes a sum-of-squared errors term
or each response, with the reciprocal of the corresponding mea-
urement variance as a weighting factor, and a model-based
enalty term for each differential equation, with the reciprocal
f the process noise variance as a weighting factor. Optimiz-
ng the iPDA objective function, using either a simple iterative
wo-step procedure (in which spline coefficients are estimated
n the first step and fundamental parameters are estimated in
he second) or simultaneous estimation of spline coefficients

nd model parameters, produces approximate maximum like-
ihood estimates for the parameters, conditional on the data
nd knowledge about the measurement and disturbance vari-
nces.

ig. 13. Observed, true, and predicted temperature response for iPDA for the non-
inear MIMO CSTR example (�, simulated data; - - -, response of the system with
rue parameters and true stochastic noise; —, iPDA response).
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ig. 14. Observed, true, and predicted temperature response for NLS for the nonlin-
ar MIMO CSTR example (�, simulated data; - - -, response of the system with true
arameters and true stochastic noise; —, NLS response).

Two examples were used to validate the results. In the first,
arameters were estimated in a linearized SISO differential equa-
ion model with a stochastic disturbance using both traditional
LS and iPDA. iPDA parameter estimates were superior to those
btained using traditional NLS, and iPDA was effective in recon-
tructing the true underlying response trajectory. When iPDA was
sed with � larger than the optimal value, parameter estimates
ere similar to those obtained using traditional NLS because large

alues of � are appropriate when the traditional NLS assumptions
i.e., negligible stochastic disturbance compared to the measure-

ent noise) hold. In the second case study, two parameters in
nonlinear MIMO CSTR with a stochastic disturbance were esti-
ated. Similar to the first case study, iPDA performed better than

raditional NLS in estimating parameters and reconstructing the
esponse trajectory.

From the case studies we see that iPDA (like a Kalman filter)
an be used as a state smoother. Recent simulation studies (Varziri,
008) have confirmed that iPDA can also be used to observe unmea-
ured states and to estimate parameters when some of the states
re unmeasured.

In our case studies, the measurement noise variance and the
odel disturbance variance were assumed known. In practical sit-

ations however, this is not the case. Although knowledge about
easurement variances can be obtained from replicate measure-
ents, it is difficult to obtain a priori knowledge about the model

isturbance variance. One objective of our ongoing work is to
stablish a means of estimating the weighting factor without the
imiting assumption of known variances. We are also working
o obtain confidence interval expressions for the model parame-
ers.

In iPDA the objective function is minimized by an itera-
ive approach but other approaches for minimizing the same
bjective function are also possible. In particular, nonlinear
nd quadratic programming techniques that can handle large-
cale minimization problems are potential candidates. These
ethods have been applied to problems in which orthogo-

al collocation on finite elements are used to discretize the

DEs (Biegler & Grossman, 2004; Tanartkit & Biegler, 1995;
joa & Biegler, 1991), and we are hopeful that they can be
sed effectively to reduce the computational requirements of

PDA.
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ppendix A

In this section, the results of Section 2 are repeated for a multi-
ariate case.

We consider a multi-input multi-output first order, nonlinear
ystem defined as follows:

ẋ(t) = F(x(t), u(t), �) + �(t)
x(t0) = x0
y(tj) = Cx(tj) + �(tj)

(36)

here x is the vector of n state variables, F (nonlinear function) is
n n × 1 vector, u is the vector of u input variables, y is the vector
f m output variables, and C is a m × n matrix. x0 is a multivariate
ormal random variable with mean E{x0} and cov(x0) = �0.

�(t) is a continuous zero-mean stationary white noise process
ith covariance matrix E{�(t1)�(t2)T}= Qı(t2 − t1), where Q is the

orresponding power spectral density and ı(.) is the Dirac delta
unction. For the discrete time white noise process:

{
�(j1 �t)�T (j2 �t)

}
=
{

Q

�t
j1 = j2

0 j1 /= j2
(37)

here j1 and j2 are integers and �t is the sampling period.
(tj) = [ε1j,. . ., εmj]T is a vector of m zero-mean random variables. We
ssume that measurements of different responses from the same
xperimental run are independent.

{�(ti)�
T (tj)} =

{
E i = j
0 i /= j

(38)

is diagonal with diag(E) = [�2
1j

, . . . , �2
mj

]
T

for the jth run. We also
ssume that measurements from different experimental runs are
ndependent. Whenever the above assumptions are not appropri-
te, they can be made more general. However, the results in that
ase maybe more complex depending on the covariance matrix
tructure.

We assume that the response of the above stochastic system can
e approximated by a linear combination of some B-splines:

i∼(t) = ϕT
i (t)�i for i = 1, . . . , n (39)

here ϕi(t) is a vector containing ci basis functions, �i is vector of
i spline coefficients and ωi(t) is the stochastic term. Therefore

∼(t) =
[

ϕT
1(t) 0 · · · 0

0 ϕT
2(t) · · · 0

0 0 · · · ϕT
n(t)

]⎡
⎣�1

...
�n

⎤
⎦ = �(t)�c (40)

here

(t) =
[

ϕT
1(t) 0 · · · 0
0 ϕT

2(t) · · · 0
0 0 · · · ϕT

n(t)

]
and �c =

⎡
⎣�1

...
�n

⎤
⎦

s the concatenated vector of spline coefficients.
Again we consider Eq. (13), from the same arguments that

ere used for the SISO case, we will get the same expression for
(x0, . . . , xq|�) as before:

(x0, . . . , xq|�) ∝ exp

{
−
∫

(ẋ(t) − F(x(t), u(t), �))T Q−1(ẋ(t) − F(x(t), u(t), �)) dt

}

×exp{−(x0 − E{x0|�})T
�−1

0 (x0 − E{x0|�})} (41)

uppose the ith response (i = 1,. . ., m) is measured Ni
imes observations. Let yc = [y11· · ·y1N1 · · ·ym1· · ·ymNm ]T

nd �c = [ε11· · ·ε1N1 · · ·εm1· · ·εmNm ]T is zero mean with

B
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ov(�c) = � =

⎡
⎣�2

1 IN1 · · · 0
. . .

0 · · · �2
mINm

⎤
⎦ . Considering xc =

x11· · ·x1N1 · · ·xm1· · ·xmNm ]T

c = Ccxc + �c (42)

{yc|xc, �} = xc and cov{yc|xc, �} = � (43)

here Cc =

⎡
⎣ c11IN1 · · · 0

. . .
0 · · · cmmINm

⎤
⎦ . From (43):

(yc|x0, . . . , xq, �) ∝ exp{−(yc − Ccxc)T �−1(yc − Ccxc)} (44)

rom (13), (41), and (44):

(x0, . . . , xq, yc|�) = exp{−(yc − Ccxc)T �−1(yc − Ccxc)}

×exp

{
−
∫

(ẋ(t)−F(x(t), u(t), �))T Q−1(ẋ(t)−F(x(t), u(t), �)) dt

}

×exp{−(x0−E{x0|�})T
�−1

0 (x0−E{x0|�})} (45)

herefore the optimal state and parameter estimates, x̂, �̂ minimize

yc − Ccxc)T �−1(yc − Ccxc)

+
∫

(ẋ(t) − F(x(t), u(t), �))T Q−1(ẋ(t) − F(x(t), u(t), �)) dt

+(x0 − E(x0|�))T
�−1

0 (x0 − E{x0|�}) (46)

f we assume that the initial condition is perfectly known and that
he states can be approximated by Eq. (40) we have:

yc − Ccx∼c)T �−1(yc − Ccx∼c)

+
∫

(ẋ∼(t) − F(x∼(t), u(t), �))T Q−1(ẋ∼(t) − F(x∼(t), u(t), �)) dt

(47)

f the integral in (47) is discretized:

yc − Ccx∼c)T �−1(yc − Ccx∼c)

+
q∑

i=0

(ẋ∼(ti) − F(x∼(t), u(t), �))T
�−1

p (ẋ∼(ti) − F(x∼(t), u(t), �))

(48)

here �p = Q/�t.
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