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Approximate Maximum Likelihood Estimation (AMLE) is an algorithm for estimating the states and parameters of models described by stochastic
differential equations (SDEs). In previous work (Varziri et al., Ind. Eng. Chem. Res., 47(2), 380–393, (2008); Varziri et al., Comp. Chem. Eng.,
in press), AMLE was developed for SDE systems in which process-disturbance intensities and measurement-noise variances were assumed to be
known. In the current article, a new formulation of the AMLE objective function is proposed for the case in which measurement-noise variance
is available but the process-disturbance intensity is not known a priori. The revised formulation provides estimates of the model parameters
and disturbance intensities, as demonstrated using a nonlinear CSTR simulation study. Parameter confidence intervals are computed using
theoretical linearization-based expressions. The proposed method compares favourably with a Kalman-filter-based maximum likelihood method.
The resulting parameter estimates and information about model mismatch will be useful to chemical engineers who use fundamental models for
process monitoring and control.

L’estimation des vraisemblances maximums approximatives (AMLE) est un algorithme destiné à l’estimation des états et des paramètres de modèles
décrits par les équations différentielles stochastiques (SDE). Dans un précédent travail (Varziri et al., 2008a, 2008b), l’AMLE a été mis au point
pour des systèmes SDE dans lesquels les intensités de perturbations et les variances de bruits de mesure sont supposées connues. On propose
dans cet article une nouvelle formulation de la fonction objectif de l’AMLE pour le cas où la variance de bruit de mesure est disponible mais où
l’intensité des perturbations de procédé n’est pas connue a priori. La formulation révisée fournit des estimations des paramètres de modèle et
des intensités de perturbations, comme le démontre une étude de simulation en CSTR non linéaire. Les intervalles de confiance des paramètres
sont calculés par ordinateur au moyen d’expressions basées sur la linéarisation théorique. La méthode proposée se compare favorablement à
une méthode de vraisemblance maximun reposant sur le filtre de Kalman. Les estimations de paramètres qui en résultent et l’information sur la
discordance de modèle seront utiles aux ingénieurs en génie chimique qui utilisent des modèles fondamentaux pour la surveillance et le contrôle des
procédés.
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INTRODUCTION

Developing mechanistic mathematical models is of great
importance in many disciplines in engineering and
science (Biegler and Grossman, 2004). In fundamental

dynamic models of chemical processes, which are based on
material and energy balances, it is important for the modeller
to obtain appropriate values of kinetic and transport parameters
using experimental data. The problem of parameter estimation
can be formulated using the following continuous-time stochastic
dynamic model. To keep the notation simple, a Single-Input
Single-Output (SISO) model with a known initial condition is
used; extension to Multi-Input Multi-Output (MIMO) systems
with unknown initial conditions is straightforward (Varziri et al.,

2008a, in press).

ẋ(t) = f (x(t), u(t), �) + �(t)
x(t0) = x0

y(tmj) = x(tmj) + ε(tmj)
(1)

x ∈ � is the state variable, u ∈ � is the input variable and y ∈ � is
the output variable. � ∈ �p is the vector of model parameters and
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Figure 1. Process disturbance.

f : � × � × �p → � is a nonlinear function of the state variables,
the input variables and the model parameters. We assume that f
satisfies some regularity conditions (Kloeden and Platen, 1992)
so that Equation (1) has a unique solution. ε is a discrete-time
zero-mean uncorrelated Normal random variable with variance
�2

m. �(t) is a continuous zero-mean stationary white-noise process
with covariance matrix E{�(t)�(t + �)} = Qı(�), where Q is the
corresponding process disturbance intensity and ı(·) is the Dirac
delta function. The random noise trajectory �(t) is a series of ran-
dom steps with a switching time of �t, where �t → 0. For the cor-
responding discrete-time white-noise process (Maybeck, 1979):

E{�( j1�t)�( j2�t)} =
{

Q

�t
j1 = j2

0 j1 �= j2

(2)

where j1 and j2 are integers. We also assume that the process dis-
turbance �(t) and the measurement noise ε(t) are not correlated.
In Figure 1, a discrete random white noise sequence is shown,
where the sampling interval for the step functions is �t = 0.1
min., and the variance of the white noise sequence is Q/�t = 4 ×
10−2 (kmol/m3/min)2. As �t → 0, and the disturbance intensity
Q remains fixed, the variance of the random steps becomes infinite
and we obtain the continuous white noise �(t) in Equation (1).

A continuous-time model is used because chemical processes
that we are concerned with have a continuous-time nature,
and mathematical models for these processes are derived
based on continuous-time material, energy, and momentum
balances. Using discrete-time models to represent these processes
involves inherent approximations. Also, the continuous-time
representation is more convenient if some of the data that are
used for parameter estimation are irregularly sampled (Kristensen
et al., 2004; Varziri et al., 2008b, in press).

Parameter values are generally selected so that the model
predictions are as close as possible (usually in the sense of sum of
squared errors (SSE)) to the measured responses of the process.
Deviations between the model predictions and the measured
responses arise from two sources: (i) measurement errors and
(ii) process disturbances or model-plant mismatch. Measurement
errors, which arise due to sensor inaccuracy and fluctuations,
only influence the measured outputs at the current time. Process
disturbances and model-plant mismatch, however, can influence

the future behaviour of the process, and hence future measured
responses. If discrepancies caused by process disturbances and
model mismatch are very small, it is appropriate to model lumped
dynamic systems using ordinary differential equations (ODEs).
On the other hand, when unknown disturbances and mismatch
cause significant discrepancies, it is appropriate to use stochastic
differential equation (SDE) models that explicitly account for
unmeasured process disturbances in the states (Jazwinski, 1970;
Maybeck, 1979).

Parameter estimation in ODEs is usually treated as a constrained
nonlinear optimization problem that requires iterative numerical
solution of the ODEs (Bard, 1974; Bates and Watts, 1988;
Seber and Wild, 1989; Ogunnaike and Ray, 1994). Robust
and efficient methods such as multiple shooting (Bock, 1981,
1983) and collocation-based techniques (Biegler, 1984) have also
been developed. Unfortunately, these methods, which neglect
process disturbances, can result in biased parameter estimates if
disturbances are significant (Voss et al., 2004).

Several methods are available for parameter estimation in SDEs
(Nielsen et al., 2000). Maximum Likelihood (ML) methods have
been used for parameter estimation in stochastic dynamic models
(Maybeck, 1982). In the classical ML method, the parameters are
selected so that the conditional probability density function of
the measured outputs, given the model parameters, is maximized
(e.g., Shumway and Stoffer, 2000; Kristensen et al., 2004).

p(ym1, . . . , ymn| �) =
n∏

i=1

p(yi−1, . . . , y1, �) (3)

where ymj = y(tmj). The conditional density functions used
in the classical ML method are generally difficult to obtain
and require the successive solution of a partial differential
equation (the forward Kolmogorov equation (Jazwinski, 1970;
Maybeck, 1982)). The reason is that the probability density
of the observations depends on the probability density of the
underlying system states, which undergo a nonlinear mapping.
One way to avoid this difficulty is to use extended-Kalman-filter-
related methods in which the nonlinear model is successively
linearized so that the time evolution of the state covariance
matrix can be described by a set of ODEs (e.g., Jazwinski, 1970).
Extended Kalman filters combine numerical integration of the
model differential equations with a linearization-based solution
for the state covariance matrix (Maybeck, 1982). If the model
is highly nonlinear, linearization-based methods may perform
poorly. In such cases, the state covariance matrix can be estimated
based on deterministic sampling techniques (Julier and Uhlmann,
2004) or ensemble averaging and Monte Carlo-related algorithms
(Evensen, 2003; Andrieu et al., 2004). These methods, however,
are computationally intensive.

Classical ML estimates can be obtained using the Expectation
Maximization (EM) method (Roweis and Ghahramani, 2001;
Goodwin and Aguero, 2005). EM is an elegant method; however,
it requires calculating the expected value of the log-likelihood of
the joint density of the measured observations and unobserved
states, conditioned on the parameter values, which is also
computationally intensive and requires calculation of integrals.

ML methods are not confined to the classical case; other
density functions such as the conditional joint density function
of the states and measurements, given the model parameters,
can also be used (Maybeck, 1982). In our previous work (Varziri
et al., 2008a, in press), we developed an Approximate Maximum
Likelihood Estimation (AMLE) method that minimizes the
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conditional joint density function of the states and measurements,
given the parameters, while assuming a piece-wise polynomial
discretization scheme for the state trajectories of the dynamic
model. The minimization criterion in this algorithm is sometimes
referred to as the Joint MAP-ML criterion since it leads to
Maximum A Posteriori (MAP) state estimates (Yeredor, 2000).
Unlike Kalman-filter-based or classical ML methods, AMLE does
not require the time-varying state covariance matrix, due to the
convenient form of its objective function (shown in (11)) that
arises from the discretization of the state trajectories.

Although AMLE does not require the time-varying state
covariance matrix, the intensity of the model disturbance and
the variance of the measurement noise are required to form the
objective function. True values or reasonable estimates of some
or all of these parameters are generally not known a priori by the
modeller, and hence these parameters need to be either adjusted
by trial and error (manual Kalman filter tuning) or estimated
along with model parameters. For linear dynamic systems, cross
validation has been used to simultaneously estimate the noise
parameters and model parameters (Gong et al., 1998); however,
for nonlinear problems, cross validation can be computationally
very intensive (Solo, 1996). ML methods have been widely used
for estimating noise variances; however, the estimation problem
is generally a difficult and often ill-conditioned problem (Solari,
1969; Warnes and Ripley, 1987; Dee, 1995; Dee and Da Silva,
1999), so that simplifying assumptions about the structure of the
noise covariance matrix need to be made to make the estimation
problem tractable. In engineering problems, it is often reasonable
to assume that the covariance matrix of the measurement noise
is reasonably well known because this information is either
provided by the manufacturer of the measurement device or
can be determined from replicate measurements. Disturbance
intensity information is typically poorly known.

In this article, we present a modified formulation of the AMLE
objective function following an approach developed by Heald and
Stark (2000), for the case in which measurement-noise variance
is available but the process-disturbance intensity is not known.
We then apply the proposed algorithm to estimate the states
and parameters of a nonlinear Continuous Stirred Tank Reactor
(CSTR) in a simulation study, assuming that the measurement
noise variances are known, but the process disturbance intensities
are unknown. We also compare the proposed method to
an extended Kalman filter-based maximum likelihood method
(Kristensen et al., 2004) in this case study. The paper is organized
as follows. In AMLE Fitting Criterion Section, the AMLE algorithm
is briefly reviewed. Estimation of process disturbance intensities
is discussed in Estimation of Disturbance Intensity Section. In
Simulation Case Study: Nonlinear CSTR Section, the nonlinear
CSTR case study is presented, followed by the summary and
conclusions in Summary and Conclusions Section.

AMLE FITTING CRITERION
In the following paragraphs we briefly review the AMLE
algorithm.

At the discrete time ti, where ti = ti−1 + �t and the sampling
interval �t is small, Equation (1) can be written using the
following Euler approximation.

x(ti−1 + �t) = x(ti)

= x(ti−1) + f (x(ti−1), u(ti−1), �)�t + �(ti−1)�t (4)

Note that the variance of random noise term �(ti−1)�t (increment
of a Wiener process with constant diffusion Q) is Q �t. We refer
to this variance as �2

p because it is the variance of the stochastic
step disturbances entering the process. Consider x(ti) at q + 1
uniformly spaced time points, ti, i = 0 · · · q so that q�t = T, where
T = tq − t0 is the overall time span for the model predictions.
For brevity, we define xi = x(ti) and x as a vector containing
xis for i = 0 · · · q. Please note that the set of times at which the
measurements are available is within the [t0, tq] interval and is
denoted by tmj( j = 1 · · · n). The measurement times tmj do not
need to be uniformly spaced. The vector of outputs at observation
times y(tmj)( j = 1 · · · n) and its corresponding state vector of
true values x(tmj)( j = 1 · · · n) and measurement noise vector
ε(tmj)( j = 1 · · · n) are denoted by ym, xm, and εm respectively.

Note that we have used different discretization schemes for
the measurements and state trajectories so that we can treat the
state trajectories as continuous-time functions by letting �t (the
sampling interval for state discretization) go to zero as shown in
(9). As explained in Introduction Section, the chemical processes
that we are concerned with are continuous-time in nature and
their corresponding mathematical models are derived based on
first principle material and energy balances in continuous-time.
The measurements however, are generally taken at discrete times.
Problems such as existence of unmeasured states, states measured
at irregularly sampled times, and different states measured at
different points in time are commonly faced by chemical engineers
when estimating parameters in nonlinear dynamic processes
(Varziri et al., 2008b, in press). The formulation proposed in this
article allows for addressing these problems by using continuous-
time state trajectories and discrete-time measurements.

We shall now consider several probability density functions
whose log-likelihood could be maximized to obtain optimal
parameter estimates:

p(ym| �)

p(x, �|ym)

p(x|ym, �)

p(x,ym| �)

The first density function, which is the same density function
as shown in Equation (3), is used in classical ML estimation
(Seber and Wild, 1989). As noted in the introduction, forming
such density functions for SDE models can be very difficult if the
model is nonlinear.

The second density function is the posterior joint distribution
of x and � that leads to optimal state and parameter estimates in
a Bayesian framework (Seber and Wild, 1989). Using this density
function, however, requires a reasonable prior distribution for the
parameters, which can be hard to obtain. The modeller might
also opt to use a non-informative prior. In this case, minimizing
density function 2 is equivalent to minimizing density function 4.

To compare the third and the fourth density functions, we note
that, from Bayes’ rule:

p(x|ym, �) × p(ym| �) = p(x,ym| �) (5)

Using the fourth density function is preferable because p(x,ym| �)
contains information about p(ym| �), which, in turn, depends on
� (Maybeck, 1982).
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Using Equations (1) and (4), the density function p(x,ym| �)
can be written as (Varziri et al., 2008a, in press):

p(x,ym| �) = 1
2�n/2�n

m

exp

(
− SSE

2�2
m

)
× 1

2�q/2�
q
p

exp

(
−PEN

2�2
p

)
(6)

where

SSE = (ym − xm)T(ym − xm)

PEN =
q∑

i=1

(xi − xi−1 − f (xi−1, ui−1, �)�t)2

�2
p = Q�t (7)

Please note that minimizing (6) with respect to �2
m leads to

�̂2
m = SSE/n. As explained in Estimation of Disturbance Intensity

Section, this estimate overlooks the uncertainty in the estimated
states.

If Q and �2
m are known, (6) can be simplified to

p(x,ym| �) = C1 × exp

(
− SSE

2�2
m

)
× exp

(
−PEN

2�2
p

)
(8)

where C1 depends on �2
m and �2

p , but not on the model parameters
or the states. We will let �t to shrink to zero to obtain the
continuous-time equivalent of (8) (shown in Equation (11)) that
is used in our algorithm (Varziri et al., 2008a, in press). Note
that when �t → 0, then C1 → ∞. To avoid this problem, the
probability density functional (Jazwinski, 1970) is defined as:

lim
�t→0

p(x,ym| �)
C1

= lim
�t→0

exp

(
− SSE

2�2
m

)
× exp

(
−PEN

2�2
p

)
(9)

From (7) it can be noted that SSE does not depend on �t. We can
also see that:

lim
�t→0

exp

(
−PEN

2�2
p

)
= exp

(
lim

�t→0

(
−PEN

2�2
p

))

= exp


 lim

�t→0

q∑
i=1

(xi − xi−1 − f (xi−1, ui−1, �)�t)2

2Q�t




= exp


 lim

�t→0

q∑
i=1

(
xi−xi−1

�t
− f (xi−1, ui−1, �)

)2
�t

2Q




= exp


 1

2Q

tq∫
t0

(ẋ(t) − f (x(t), u(t), �))2 dt


 (10)

Note that optimal state and parameter estimates are obtained by
substituting (10) in (9) and minimizing the negative of the natural
logarithm of the probability density functional as follows:

−ln

(
lim

�t→0

p(x,ym| �)
C1

)
= (ym − xm)T(ym − xm)

2�2
m

+ 1
2Q

tq∫
t0

(ẋ(t)−f (x(t), u(t), �))2 dt (11)

Since x(t) is an unknown function, minimizing (11) over x(t)
and � is an infinite-dimensional problem (a calculus of variations
problem) which is generally hard to solve.

To turn the problem into a finite-dimensional problem, the
state variable, x(t), is assumed to be sufficiently accurately
approximated by a basis function expansion. B-splines provide
convenient basis functions due to their compact support and other
favourable properties (Ramsay and Silverman, 2005; Poyton et al.,
2006; Ramsay et al., 2007; Varziri et al., 2008a, in press):

x(t) ≈ x∼(t) =
c∑

i=1

ˇi�i (12)

where ˇi, i = 1 · · · c are B-spline coefficients and �i(t) i = 1 · · · c

are B-spline basis functions (de Boor, 2001). The knot sequences
for the B-spline basis functions should be selected in a way that
they provide enough flexibility for the B-spline curves to follow
the possibly sharp features of the state trajectories. However,
caution should be practiced since too fine of a knot sequence could
significantly slow down the parameter-estimation algorithm. Our
experience shows that if the sampling interval is not too large,
placing one knot at each observation point and one or two knots
in between every two observation points leads to sound results.
Once the knot sequence is rich enough to capture the important
features of the state trajectories, not much is gained by further
refining the grid. Please refer to Poyton et al. (2006) and Varziri
et al. (2008b, in press), for further discussions and examples on
knot sequence strategies. Note that Equation (12) can be written
in matrix form:

x∼(t) = �T(t)� (13)

where �(t) is a vector containing the c basis functions and � is
vector of c spline coefficients. The B-spline expansion, x∼(t), can
easily be differentiated:

ẋ∼(t) = d

dt

(
c∑

i=1

ˇ	�	(t)

)
=

c∑
i=1

ˇ	�̇	(t) = �̇
T

� (14)

By substituting (12) and (14) into (11) we have the following
finite-dimensional optimization problem:

�̂, �̂ = arg min
�,ˇ


 (ym − x∼m)T(ym − x∼m)

2�2
m

+ 1
2Q

tq∫
t0

(ẋ∼(t) − f (x∼(t), u(t), �))2 dt


 (15)

Minimizing (15) provides point estimates for the model
parameters and the spline coefficients. The spline coefficients
can then be used to determine the estimated state trajectory
x∼(t). In order to obtain approximate confidence intervals for the
model parameters, the inverse of the Fisher information matrix
can be used as an approximation to the covariance matrix of
the combined vector of states and parameters (Varziri et al.,
2008). The AMLE criterion in nonlinear problems generally
produces inconsistent and biased parameter estimates but it may
outperform ML in the overall mean squared error especially when
a small number of measured data is used (Yeredor, 2000) and
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is much easier to formulate. Equation (11) was derived based
on the assumption that �2

m and Q (the noise parameters) are
known. In the next section, we consider the more usual case
where Q is unknown and must be estimated along with the model
parameters, �.

ESTIMATION OF DISTURBANCE INTENSITY
Heald and Stark (2000) developed an iterative algorithm that leads
to approximate classical ML estimates for measurement noise
variance and process disturbance intensity in a discrete dynamic
system. As mentioned in the introduction, using the classical ML
criterion is not straightforward because the density function to be
maximized is: p(ym| �, �m, �p) = ∫

p(ym,x| �, �m, �p)dx and this
integration is generally very difficult or not tractable at all. Heald
and Stark (2000) used Laplace’s method (described by Mackay,
2004) to approximate this integral. Their development leads to the
following measurement noise estimator:

�̂2
m = SSE

n − 
m

(16)

where 
m = (1/�̂2
m)Trace(A−1) and A is the Hessian matrix

of −lnp(x|ym, �, �m, �p) with respect to x evaluated at
arg min

x

{−lnp(x|ym, �, �m, �p)
}

. Substituting 
m in (16) and

solving for �̂2
m we have:

�̂2
m = SSE

n
+ Trace(A−1)

n
(17)

If we try to obtain an estimate of �2
m by maximizing (6) (or

by minimizing − ln p(x,ym|�)) we will get �̂2
m = SSE/n which

lacks the second term in (17); this would have been a good
estimate if the true state trajectory, rather than the estimated state
trajectory, x∼, was used to calculate SSE. The term, Trace(A−1)/n

can therefore be thought of as a compensation for deviations
of x∼ from x; this makes more sense if we consider A−1 as an
approximation to the inverse of the Fisher information matrix
which is, in turn, an approximation for the covariance matrix
of x∼. Having Equation (17) at our disposal and assuming that
�2

m is known, we can pick an initial estimate of Q and solve
the minimization problem in (15) to get �̂, �̂, and therefore x∼.
The estimates obtained can then be used to evaluate �̂2

m using
(17). Next, a new estimate of Q is obtained to minimize the loss
function

(
�̂2

m/�2
m − 1

)2
. This two-step optimization scheme can

be summarized as follows:

Outer optimization problem:

Q̂ = arg min
Q

(
(ym − x∼m(Q))T (ym − x∼m(Q))

n�2
m

+ Trace(A−1)
n�2

m

∣∣∣
�̂,�̂

− 1

)2

(18)

where �̂, �̂ are obtained as the solution of the inner optimization
problem

�̂, �̂ = arg min
�,ˇ


 (ym − x∼m)T(ym − x∼m)

2�2
m

+ 1

2Q̂

tq∫
t0

(ẋ∼(t) − f (x∼(t), u(t), �))2 dt


 (19)

The overall minimization problem presented in Equations
(18) and (19) consists of outer and inner optimizations. The
outer optimization is to minimize the discrepancy between the
estimated and the known measurement variance, while the inner
minimizes the AMLE criterion in Equation (15) using an estimate
of Q obtained from the outer optimization. The results of this
overall optimization problem provide the modeller with �̂, �̂
and Q̂. �̂ is the desired estimate for the fundamental model
parameters. The estimated spline coefficients �̂, can be used to
obtain estimated state trajectories x∼ and Q̂ provides information
about the magnitude of the model uncertainty and process
disturbance.

SIMULATION CASE STUDY: NONLINEAR CSTR
We consider the same two-state CSTR example as in our previous
work (Varziri et al., 2008). The model equations consist of
material and energy balances (Marlin, 2000) with additional
stochastic disturbance terms:

dCA(t)
dt

= F(t)
V

(CA0(t) − CA(t)) − gCA(t) + �1(t)

dT(t)
dt

= F(t)
V

(T0(t) − T(t)) + ˇ1 (T(t) − Tcin(t))

+ˇ2gCA(t) + �2(t)

CA(0) = 1.569 (kmol m−3)

T(0) = 341.37 (K)

y1(ti) = CA(ti) + ε1(ti)

y2(tj) = CA(tj) + ε2(tj)

g = krefexp

(
−E

R

(
1
T

− 1
Tref

))
,

ˇ1 = − aFb+1
c (t)

V�Cp

(
Fc(t) + aFb

c (t)
2�cCpc

) ,

ˇ2 = (−�Hrxn)
�Cp

(20)

where E
{

�1(ti)�1(tj)
} = Qp1ı(ti − tj), E

{
�2(ti)�2(tj)

} = Qp2ı

(ti − tj) (ı(·) is the Dirac delta function), ε1(tmj) j = 1 . . . N1 and
ε2(tmj) j = 1 . . . N2 are white-noise sequences with variances
�2

m1 and �2
m2 respectively. We also assume that �1, �2, ε1, and

ε2 are independent. CA is the concentration of the reactant A,
T is the reactor temperature, V is the volume and Tref = 350 K
is a reference temperature. This stochastic differential equation
model is nonlinear in the states (CA and T) and in the parameters,
and does not have an analytical solution. The true values of
the parameters to be estimated are: E/R = 8330.1 K, kref = 0.461
min−1, a = 1.678E6, b = 0.5. To examine the robustness of the
proposed algorithm to the initial parameter values, the initial
guess for each parameter was randomly drawn from a Normal
distribution with a mean of 50% of the true value of the
corresponding parameter and a variance of roughly 15% of the
true parameter value.

Parameters a and b account for the effect of the coolant flow rate,
Fc, on the heat transfer coefficient. This nonlinear system has five
inputs: the reactant flow rate F, the inlet reactant concentration
CA0, the inlet temperature T0, the coolant inlet temperature Tcin,
and the coolant flow rate Fc. Values for the various other known

| 832 | THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING | | VOLUME 86, 2008 |



constants are as follows: V = 1.0 m3, Cp = 1 cal g−1 K−1, � = 1E6
g m−3, Cpc = 1 cal g−1 K−1, �c = 1E6 g m−3, and −�Hrxn = 130E +
6 cal kmol−1. The initial steady-state operating point is: CAs =
1.569 kmol m−3 and Ts = 341.37 K.

In this example, there is no temperature controller, and
perturbations are introduced into each of the five inputs using
the input scheme shown in Figure 2 (Poyton, 2005).

The back-to-back step changes in the five system inputs
generated enough excitation so that the model parameters could
successfully be estimated. However, it should be noted that the
focus of this article is not experimental design for parameter
estimation purposes. Better designs exist that lead to less biased
and more precise parameter estimates.

We assume that concentration and temperature are measured;
however, we treat the initial concentration and temperature
conditions as unknowns that are estimated along with other
state values. Note that known initial conditions can be forced
as constraints in the AMLE minimization problem (Varziri
et al., 2008a, in press). Temperature is measured once every
0.3 min while concentration is measured once per minute.
The duration of the simulated experiment is 64 min, so that
there are 213 temperature measurements and 64 concentration
measurements. The noise variance for the concentration and
temperature measurements are �2

m1 = 4 × 10−4 (kmol/m3)2 and
�2

m2 = 6.4 × 10−1 K2, respectively. The corresponding process
noise intensities for the stochastic disturbances used in
the simulations are Qp1 = 4 × 10−3 (kmol/m3)2/min and Qp2 =
4 K2/min.

The model in Equation (20) was simulated using the
SIMULINKTM toolbox in MATLABTM. To approximate the
continuous-time Gaussian noise we used the “band limited
white noise block” (which generates discrete-time normally
distributed random numbers) with a sampling time (0.01 min)
that was considerably smaller than the system time constants
(approximately 5min).

We assume that measurement noise variances are known but
the process disturbance intensities are unknown. From Equation
(18) the appropriate outer objective function is (J1C + J1T) shown
below in Equation (21), which is minimized with respect to Qp1

and Qp2, and the inner objective function is (J2C + J2T) which is
minimized with respect to model parameters and states, given
estimates for Qp1 and Qp2:

J1C = 1

64�2
m1

(
64∑
j=1

(
y1(tm1j) − CA∼(tm1j)

)2 + Trace

((
∂2J2C

∂C2
A∼

)−1
))

− 1

J2C = 1

2�2
m1

64∑
j=1

(
y1(tm1j) − CA∼(tm1j)

)2

+ 1
2Qp1

∫ (
ĊA∼(t) −

(
F(t)
V

(CA0(t) − CA∼(t)) + gCA∼(t)
))2

dt

J1T = 1

213�2
m2

(
213∑
j=1

(
y2(tm2j) − T∼(tm2j)

)2 + Trace

((
∂2J2T

∂T2
A∼

)−1
))

− 1

J2T = 1

2�2
m2

213∑
j=1

(
y2(tm2j) − T∼(tm2j)

)2 + 1
2Qp2

×
∫(

Ṫ∼(t) −
(

F(t)
V

(T0(t) − T∼(t)) − ˇ1 (T∼(t) − Tcin(t)) − ˇ2gCA∼(t)
))2

dt

(21)
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Figure 2. Input scheme for MIMO nonlinear CSTR.

For the temperature and concentration trajectories, 200 equally
spaced B-spline knots were used.

The minimization was performed using the IPOPT nonlinear
programming solver (Wächter and Biegler, 2006) with the
model implemented using AMPLTM and the lsqnonlin routine in
MATLABTM. Both of the inner and outer optimization problems
can indeed be solved using MATLABTM. Based on our experience
however, the computation time for solving the inner problem in
MATLABTM was prohibitively long. Thus, IPOPT and AMPLTM

were used to solve the larger, inner optimization problem.
Although we do not have formal convergence results for the
general form of the proposed inner and outer optimization
problems, we did not face any convergence issues in this case
study.

In order to investigate the sampling properties of the parameter
estimates, empirical sampling distributions were formed by
repeating this parameter estimation problem using 500 different
sets of parameter initial guesses and simulated noisy observations.
The Monte Carlo histograms and scatter plot matrix for the
parameter estimates are shown in Figures 2–4, respectively.
The histograms in Figure 3 zoom in on the main parts
of the distributions for the estimated disturbance intensities.
Corresponding boxplots that show all of the 500 estimates
are provided in the Appendix. Note that the distributions of
the disturbance intensity estimates are broad and somewhat
asymmetric.

The scatter plot matrix in Figure 5 indicates a strong nonlinear
co-dependency between estimates for parameters a and b. There
is noticeable linear co-dependency between estimates for a and
kref and modest nonlinear co-dependency between estimates for a
and E/R. Note also the strong nonlinear co-dependency between
the estimate for a and Qp1, the estimated disturbance intensity
for the material balance. There is modest correlation between the
estimates of kref and E/R. Apart from the strong co-dependency
with the estimate for a, estimates for second heat transfer
coefficient parameter b show relatively little co-dependency with
other parameter estimates. Overall, the model parameter estimates
are good.

Approximate 100(1 − ˛)% confidence intervals for the model
parameters and spline coefficients can be obtained as follows (e.g.,
Varziri et al., 2008):

� = �̂ ± z˛/2 ×
√

diag(I−1(�̂)) (22)
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Figure 3. Histograms for AMLE parameter estimates with unknown
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Figure 5. Scatter plot matrix for AMLE estimates.

Table 1. 95% Confidence intervals for AMLE model parameter
estimates from one of the 500 Monte Carlo simulations

Parameter True value Estimate SD Lower bound Upper bound

a 1.678 2.0189 0.2823 1.4656 2.5722
b 0.5 0.4298 0.0508 0.3302 0.5294
E/R 8.3301 8.4492 0.0989 8.2553 8.6431
kref 0.4610 0.4619 0.0062 0.4498 0.4740
CA0 1.5965 1.5769 0.0139 1.5497 1.6041
T0 341.3754 340.59 0.5361 339.5379 341.6396

where I is the Fisher information matrix for the inner objective
function (J2C + J2T) in Equation (21). Since obtaining the
Fisher information matrix involves calculating an expectation,
we have used an approximation. The approximate confidence
intervals are calculated based on the estimated process
noise intensity and parameters, and therefore do not take
into account the uncertainty that is introduced due to the
variance in the estimated intensity and model parameters.
Also, inaccuracies due to the Laplace approximation and also
due to nonlinearity of the equations are reflected in the
approximate confidence intervals. However, as shown below,
these intervals are quite consistent with the empirical sampling
distributions.

The parameter estimation results for one of the 500
simulated data sets are listed in Table 1. The estimated noise
intensities for this run are Q̂p1 = 2.39 × 10−3 (kmol/m3)2/min
and Q̂p2 = 3.33(K2/min). The approximate theoretical confidence
intervals calculated using these intensities along with the
estimated parameters agree with the Monte Carlo results. The
corresponding AMLE estimated trajectories are presented in
Figure 6. The estimated trajectories follow the true trajectories
closely.

For comparison purposes, we used the same simulated data and
estimated the parameters using a classical ML-based algorithm
developed by Kristensen et al. (2004). This algorithm, which
is based on the extended Kalman filter, estimates parameters in
nonlinear stochastic differential equations models by maximizing
the classical likelihood density function, p(ym| �). The estimation
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Figure 6. Estimated B-Spline trajectories of CA and T, for one of the 500
considered samples using AMLE ( , B-spline fit; •, measured data; - - -
response with true parameters and true stochastic disturbances).
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Table 2. 95% confidence intervals for classical ML model parameter
estimates [obtained using CSTM algorithm of Kristensen et al. (2003)]

Parameter True value Estimate SD Lower bound Upper bound

a 1.678 2.2324 0.5612 1.1324 3.3324
b 0.5 0.4131 0.0916 0.2336 0.5926
E/R 8.3301 8.1721 0.1951 7.7897 8.5545
kref 0.4610 0.4715 0.0112 0.4495 0.4935
CA0 1.5965 1.5770 0.0323 1.5137 1.6403
T0 341.3754 340.55 0.7926 338.9965 342.1035

was carried out using the CSTM software developed by Kristensen
et al. (2003). This software is publicly available and easy to
use. The estimated noise intensities obtained using the CSTM
package in this case are Q̂p1 = 3.00 × 10−3 (kmol/m3)2/ min and
Q̂p2 = 2.63 (K2/min). The rest of the results are presented in
Table 2. Like the AMLE method proposed in this article, the CSTM
software can accommodate unknown initial conditions for state
variables, irregularly sampled data and unknown disturbance
intensities.

The parameter estimation results are quite comparable for
the two methods. The AMLE algorithm is easier to set up and
converges faster than the classical ML-based method of Kristensen
et al. for this case study, presumably because the proposed method
does not require recursive solution of Ricatti equations to obtain
the Kalman gain and the estimated state covariance matrix.
Parameter estimates for the complete set of 500 simulated data
sets were not computed using the CSTM software because of the
long run times.

SUMMARY AND CONCLUSIONS
In this paper, an algorithm is proposed to estimate parameters,
states, and process noise intensities in nonlinear continuous-
time stochastic dynamic systems. The algorithm, which is an
extension of the AMLE algorithm previously proposed by Varziri
et al. (2008a, in press), is a two-level nonlinear minimization
problem. The outer objective function is minimized with respect
to the process noise intensity Q so that an estimate of the
measurement noise variance is close to a known true value.
The inner objective function is minimized over the model
parameters � and states x by maximizing p(x,ym| �) given the
disturbance intensity Q. Setting up the proposed algorithm is
much easier than classical likelihood methods in which p(ym| �)
is maximized. Using the likelihood corresponding to p(x,ym| �),
leads to an objective function that is easy to derive and
compute.

To generate confidence intervals for the estimated parameters,
we have used an approximation of the inverse of the Fisher
information matrix as the asymptotic covariance matrix for the
estimated parameters. Even though parameter estimates that
are obtained by minimizing the proposed objective function
will, in general, be biased for nonlinear models, there are
examples that show parameter estimates that are obtained by
maximizing p(x,ym| �) can be better in the sense of mean-
square-error, than classical ML estimates, especially when a small
amount of measured data is used (Yeredor, 2000). The proposed
AMLE parameter estimates are much easier to compute than the
corresponding classical ML parameter estimates because it does

not require recursive solution of Riccati equations to obtain the
state covariance matrix.

We have used a simple nonlinear CSTR with two states
in a simulation study to examine the effectiveness of the
proposed algorithm and the sampling properties of the parameter
and intensity estimates. The measurement noise variances are
assumed to be known, but the process noise variances are
unknown. Initial state conditions were also assumed to be
unknown. Four model parameters, along with two process noise
intensities and two state trajectories, were estimated. Monte
Carlo simulations showed that bias in the model parameter
estimates is negligible. The process disturbance intensity
estimates though, were slightly biased. This bias may result
from Laplace’s approximation, which is used in the computation
of the disturbance intensity estimates. Overall, AMLE did a
good job in jointly estimating the model parameters, state
trajectories and process noise intensities. Theoretical confidence
intervals were obtained for the model parameter estimates.
These approximate confidence intervals are in agreement with
the Monte Carlo results. We compared our parameter and
disturbance intensity estimates with those from a classical
ML-based method, using the same simulated data. In this
example, the computation time required for the AMLE algorithm
was shorter than that of the classical ML-based algorithm.
We believe that AMLE is a potentially appealing parameter
estimation algorithm that should be further studied and tested
for more complicated parameter estimation problems. Some of
the beneficial features of the proposed AMLE method are as
follows: simplicity of implementation, recognizing and taking into
account both process disturbance (model approximations) and
measurement noise, handling unknown disturbance intensities
and nonstationary disturbances, efficiently handling unknown
initial state conditions using empirical spline functions,
handling irregularly-sampled and missing state observations,
producing good parameter estimates and approximate confidence
intervals.

Industrial-scale problems are more complicated than the
simple example presented here. Further studies are underway
to investigate the performance of AMLE in practical problems
with larger numbers of inputs, outputs, and parameters, and
disturbances.

END NOTES
Please note that the SDE in (1) can be more rigorously written as dx(t) =
f (x(t), u(t), �)dt + dw(t) where dw(t) is the increment of a Wiener
process or a Brownian motion with constant diffusion Q (Maybeck, 1979).
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NOMENCLATURE
a CSTR model parameter relating heat-transfer coeffi-

cient to coolant flow rate
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b CSTR model exponent relating heat-transfer coeffi-
cient to coolant flow rate

ci number of spline coefficients for state i
CA concentration of reactant A (kmol m−3)
CA0 feed concentration of reactant A (kmol m−3)
CAs concentration of reactant A at steady state (kmol m−3)
Cp reactant heat capacity (cal g−1 K−1)
Cpc coolant heat capacity (cal g−1 K−1)
E{·} expected value
E/R activation energy over the ideal gas constant (K)
F reactant volumetric flow rate (m3 min−1)
Fc coolant volumetric flow rate (m3 min−1)
f nonlinear function
I Fisher information matrix
kref kinetic rate constant at temperature Tref (min−1)
l likelihood function
Ni number of observations of state i
p(·) probability density function
tj jth measurement time (min)
T temperature of reactor contents (K)
T0 reactant feed temperature (K)
Tcin inlet temperature of coolant (K)
Ts temperature of reactant at steady state value (K)
Tref reference temperature (K)
ui input to the differential equation for state i
V volume of the reactor (m3)
x, x state variables
x∼ B-spline approximation of the state
y noisy output measurements
ym stacked vector of measured outputs
z˛/2 normal random deviate corresponding to an upper tail

area of ˛/2

Greek Symbols
˛ significance level for confidence intervals
ˇi ith B-spline coefficient
ˇ vector of B-spline coefficients
ı(·) dirac delta function
�Hrxn enthalpy of reaction (cal g−1 K−1)
εi normally distributed measurement noise for state i
�i White Gaussian process disturbance for differential

equation of the ith state
� vector of model parameters
� density of reactor contents (g m−3)
�c coolant density (g m−3)
�2

mi Measurement noise variance for the ith state
�2

mi process noise intensity of stochastic differential
equation for state i

ϕi ith B-spline basis function
� matrix containing all ϕis

Abbreviations
AMLE approximate maximum likelihood estimation
CSTR continuous stirred tank reactor
MAP maximum A posteriori
MIMO multi-input multi-output
ML maximum likelihood
ODE ordinary differential equation
PEN model-based penalty
SISO single-input single-output
SSE sum of squared errors
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Figure 7. Boxplots for AMLE parameter estimates.
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Figure 9. Zoomed boxplots for AMLE process intensity estimates.

APPENDIX
Figures 7–9 are given in Appendix.
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