
Approximate Maximum Likelihood Parameter Estimation for Nonlinear Dynamic
Models: Application to a Laboratory-Scale Nylon Reactor Model

M. Saeed Varziri, Kim B. McAuley,* and P. James McLellan

Department of Chemical Engineering, Queen’s UniVersity, Kingston, ON, Canada K7L 3N6

In this article, parameters and states of a laboratory-scale nylon 612 reactor model (Schaffer et al. Ind. Eng.
Chem. Res. 2003, 42, 2946-2959; Zheng et al. Ind. Eng. Chem. Res. 2005, 44, 2675-2686; and Campbell,
D. A. Ph.D. Thesis, Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada,
2007) are estimated using a novel approximate maximum likelihood estimation (AMLE) algorithm (Poyton
et al. Comput. Chem. Eng. 2006, 30, 698-708; Varziri et al. Comput. Chem. Eng., published online, http://
dx.doi.org/10.1016/j.compchemeng.2008.04.005; Varziri et al. Ind. Eng. Chem. Res. 2008, 47, 380-393; and
Varziri et al. Can. J. Chem. Eng., accepted for publication). AMLE is a method for estimating the states and
parameters in differential equation models with possible modeling imperfections. The nylon reactor model
equations are represented by stochastic differential equations (SDEs) to account for any modeling errors or
unknown process disturbances that enter the reactor system during experimental runs. In this article, we
demonstrate that AMLE can address difficulties that frequently arise when estimating parameters in nonlinear
continuous-time dynamic models of industrial processes. Among these difficulties are different types of
measured responses with different levels of measurement noise, measurements taken at irregularly spaced
sampling times, unknown initial conditions for some state variables, unmeasured state variables, and unknown
disturbances that enter the process and influence its future behavior.

1. Introduction

Parameter estimation in dynamic models that are described
by a combination of nonlinear algebraic and differential
equations is a challenging problem. The complexity of the
problem increases significantly if it is acknowledged that there
are two different types of random errors that influence the
measurements obtained from dynamic processes: measurement
errors and process disturbances. Measurement errors are prob-
lematic because they can make it difficult for modelers to obtain
reliable parameter estimates, but random process disturbances
can be even more problematic because they influence the future
behavior of the process and therefore future measurements of
process outputs. For example, consider an unknown disturbance
that influences the temperature in a chemical reactor. The change
in temperature can alter the rates of chemical reactions and can
influence several different types of process measurements and
how they change over time. Modelers often have knowledge
about the quality of the measurements that are available for
parameter estimation (e.g., good estimates of measurement
variance from repeated measurements or from sensor suppliers),
but they do not have a priori knowledge about the quality of
their model equations, which are only approximate representa-
tions of the true physical process because of disturbances that
are not included in the model equations and simplifying
assumptions that are made during model development.

Approximate maximum likelihood parameter estimation
(AMLE) is a novel parameter estimation algorithm that we
recently developed to address the problem of parameter estima-
tion in continuous-time nonlinear dynamic models, in which
model discrepancies are significant.4-7 A convenient way to
account for modeling errors and process disturbances is to
include Gaussian noise terms on the right-hand side of the state
equations, thereby converting ordinary differential equation
models into stochastic differential equation (SDE) models (as

shown in eq 1, below). Until now, the AMLE algorithm has
been tested only using simulated data and simple dynamic
models of single-phase continuous stirred-tank reactors.4-7 The
purpose of this article is to examine and demonstrate the
application of AMLE to parameter and state estimation for a
two-phase laboratory-scale nylon reactor model, originally
developed by Schaffer et al.1 The nylon reactor model has four
states, which are described by one algebraic equation and three
nonlinear differential equations. Only two of the four states were
measured, and these measurements were made at irregular
sampling times that were convenient for the experimenters.1,2

We show how AMLE can address frequently encountered
parameter estimation difficulties such as working with multi-
response models with different levels of measurement accuracy;
extracting information from multiple experimental runs with
nonuniform sampling times; and dealing with unmeasured states,
unknown initial conditions, and unknown levels of modeling
error (due to disturbances and structural imperfections). It is
also shown that the AMLE framework readily facilitates the
integration of additional steady-state or dynamic information
that might be available from different sources. Our objective
in developing AMLE was to produce a straightforward param-
eter estimation algorithm that can help modelers to obtain more-
reliable parameter estimates and model predictions that can be
used in nonlinear model-based control and optimization schemes.

In section 2, the AMLE algorithm is briefly reviewed. In section
3, the laboratory-scale nylon reactor model is introduced. AMLE
is then used for parameter estimation in the proposed overall
dynamic model. Conclusions are presented in section 4.

2. Review of the AMLE Fitting Criterion

Maximum Likelihood (ML) estimation is a very popular
method for parameter estimation in a wide variety of model
types because of its desirable asymptotic properties.9,10 Unfor-
tunately, ML estimation in nonlinear stochastic differential
equations (SDEs) is generally very difficult. This difficulty arises
because, when the initial state condition with an assumed

* To whom correspondence should be addressed. E-mail:
kim.mcauley@chee.queensu.ca. Tel.: +1 (613) 533 6637. Fax: +1 (613)
533 6637.

Ind. Eng. Chem. Res. 2008, 47, 7274–72837274

10.1021/ie800503v CCC: $40.75  2008 American Chemical Society
Published on Web 08/28/2008



probability distribution function (PDF) is propagated through a
nonlinear mapping, calculating the propagated PDF can be very
complex and computationally intensive.11 Available parameter
estimation algorithms try to approximate the mapped PDF using
techniques such as local linearization and extended Kalman
filtering, deterministic sampling techniques, or ensemble
averaging.11-18

AMLE is an approximate ML-based method that maximizes
the conditional joint density function of the states and measure-
ments, given the model parameters, while assuming a piecewise
polynomial discretization scheme for the time evolution of the
states of the dynamic model. AMLE transforms the problem of
state and parameter estimation in SDEs into a nonlinear
minimization problem. In the following paragraphs, we briefly
review the AMLE algorithm. We refer the reader to Varziri et
al.5,7 for a more detailed description. To keep the notation
simple, a single-input single-output (SISO) model with a known
initial condition is used; extension to multi-input multi-output
(MIMO) systems with unknown initial conditions is straight-
forward.5

Consider the following continuous-time stochastic dynamic
model

dx(t)
dt

) f[x(t),u(t),θ]+ η(t) x(t0)) x0 y(tmj)) x(tmj)+ ε(tmj)

(1)

x ∈ R is the state variable, u ∈ R is the input variable, and y
∈ R is the output variable. θ ∈ Rp is the vector of unknown
model parameters and f: R × R × Rp f R is a nonlinear
function of the state variables, the input variables, and the
parameters. We assume that f satisfies some regularity condi-
tions,19 so that eq 1 has a unique solution. ε is a discrete zero-
mean uncorrelated normal random variable with variance σm

2.
η(t) is a continuous zero-mean stationary white-noise process
with covariance matrix E[η(t) η(t + τ)] ) Qδ(τ), where Q is
the corresponding power spectral density and δ(.) is the Dirac
delta function. The random noise trajectory, η(t), is a series of
random steps with a switching time of ∆t, where ∆t f 0. We
also assume that the process disturbance, η(t), and the measure-
ment noise, ε(t), are not correlated. The set of times at which
the measurements are available is denoted by tmj (j ) 1-n).
The measurement times, tmj, do not need to be uniformly sp-
aced. The vector of outputs at observation times y(tmj) (j ) 1-n)
and its corresponding state vector of true values x(tmj) (j ) 1-n)
are denoted by ym and xm, respectively. {Note that this dynamic
model can be more rigorously written as dx(t) ) f[x(t),u(t),θ]
dt + dω(t), where dω(t) is a Wiener process.20}

In engineering applications, reasonable estimates for the
measurement noise variance are usually available either from
repeated experimental observations or from the manufacturer
of the measurement device. Obtaining a reasonable estimate for
the process disturbance intensity, Q, however, is very difficult.
Assuming known measurement noise variance, σm

2, but un-
known process disturbance intensity Q, Varziri et al.7 used an
ML argument21 to propose a two-step optimization scheme that
allows for estimating the process disturbance intensities along
with model states and parameters. The idea is to select Q to
ensure that the estimated measurement noise variance, σ̂m

2, is
close to the known value of σm

2. The two-step optimization
scheme proposed by Varziri et al.7 can be summarized as follows

Outer optimization problem: Q̂) arg min
Q (σ̂m

2(Q)

σm
2

- 1)2

(2)

Inner optimization problem: θ̂,x̂(t)) arg min
θ,x(t)

((ym - xm)T(ym - xm)

2σm
2

+ 1

2Q̂
∫t0

tf { dx(t)
dt

- f[x(t),u(t),θ]} 2
dt)(3)

where [t0, tf] is the time span over which the measurements are
taken. The outer optimization minimizes the discrepancy
between the estimated and known measurement variances, and
the inner optimization minimizes the criterion in eq 3 using the
value of Q obtained from the outer optimization.

Because x(t) is unknown, minimizing eq 3 over x(t) and θ is
an infinite-dimensional optimization problem (a calculus of
variations problem) that is generally hard to solve. To turn the
problem into a finite-dimensional problem, the state trajecto-
ry,x(t), in AMLE is assumed to be sufficiently accurately
approximated by a basis function expansion. B-splines provide
a convenient basis because of their compact support and other
favorable properties4,22,23

x(t) ≈ x∼ (t))∑
i)1

c

�i�i )�T(t)�

dx∼ (t)

dt
) d

dt[∑
i)1

c

�i�i(t)] )∑
i)1

c

�i�̇i(t)) �̇T(t)�(4)

where �i, i ) 1-c, represents B-spline coefficients; � is a vector
of c B-spline coefficients; φi(t), i ) 1-c, represents B-spline
basis functions;24 and �(t) is a vector containing the c basis
functions. Note that other basis functions could readily be used
instead of B-splines.23

By substituting eq 4 into eq 3, we obtain the following finite-
dimensional inner optimization problem

θ̂,�̂) arg min
θ,� ((ym - x∼ m)T(ym - x∼ m)

2σm
2

+ 1

2Q̂
∫t0

tf { dx∼ (t)

dt
-

f[x∼ (t),u(t),θ]} 2

dt)(5)

The objective function in eq 5 can be minimized either
simultaneously over θ and � or in an iterative way as described
by Varziri et al.5 Minimizing eq 5 provides point estimates for
the model parameters and the spline coefficients, given the
current estimate of the process disturbance intensity Q̂. The
estimated spline coefficients can then be used to determine
the estimated state trajectory, x(t), which, in turn, is used to
evaluate σ̂m

2 from eq 6 below. The variance estimate, σ̂m
2, in

the objective function of eq 8 is the approximate ML estimator
developed by Heald and Stark21

σ̂m
2 )

[ym - x∼ m(Q)]T[ym - x∼ m(Q)]

n
+ trace(A-1)

n θ̂,�̂ (6)

where A is the Hessian matrix of the objective function in eq
3 with respect to the discrete state variables, evaluated at the
converged parameter and state estimates. Varziri et al.5 showed
that if the SDE model in eq 1 is discretized using Euler’s method
with a very small ∆t as the discretization interval, minimizing
eq 3 (and approximately minimizing eq 5) is equivalent to
minimizing -ln p(ym,x|θ), where x is the vector of discretized
states and p denotes the probability density function. Because
the state trajectory is approximated in the inner optimization
step in AMLE using a B-spline expansion, matrix A can also
be approximated in terms of the Hessian matrix of the objective
function in eq 5 with respect to the B-spline coefficients �
evaluated at θ̂ and �̂. This information is often available from
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solving the inner optimization problem in eq 5 and does not
need to be recalculated.

The converged results of this overall optimization problem
(eqs 2 and 5) provide the modeler with θ̂, �̂, and Q̂. θ̂ is the
desired estimate for the fundamental model parameters.
The estimated spline coefficients �̂, can be used to obtain the
estimated state trajectory x∼, and Q̂ provides information about
the magnitude of the model uncertainty and process disturbances.
A diagram summarizing the algorithm appears in Figure 1.

Note that the outer optimization (eq 3) is an ad hoc way to
ensure that the estimated intensity results in an estimate for the
measurement noise variance that is consistent with its known
value. Therefore, even though the parameters in the inner
objective function are obtained by maximizing a likelihood
function (conditioned on Q), the estimated process disturbance
intensity is not a maximum likelihood estimate.

3. Case Study: Laboratory-Scale Nylon 612 Reactor
Model

3.1. Nylon 612 Mathematical Model. Nylons are widely
used polymers that are produced according to the following
reaction between carboxylic acid end groups (C) and amine end
groups (A) to produce amide linkages (L) and water (W)

sCOOH
C

+H2Ns
A
hsCONHs

L
+H2O

W

The forward reaction is a polyamidation reaction in which
carboxyl and amine end groups are consumed to form amide
links and water. In the reverse hydrolysis reaction, amide links
are broken to form carboxyl and amine end groups.

The purpose of the experimental study and modeling of nylon
reactions conducted by Shaffer et al.1 and Zheng et al.2 was to
gain quantitative knowledge of the kinetics and equilibrium of
the polycondensation reaction at the high temperatures and low
water contents that are experienced in the final stages of
commercial polyamidation processes.

The following equations describe the dynamic behavior of
the liquid contents of a well-stirred melt-phase nylon polym-
erization reactor (see Figure 2), through which a gaseous mixture
of nitrogen and steam is bubbled. Refer to Schaffer et al.1 and
Zheng et al.2 for detailed information about the reactor equip-
ment and the development of the material-balance equations.

dL
dt

)-dA
dt

)-dC
dt

) kp(CA- LW
Ka

)) f1(θ,C,A,L,W) (7)

dW
dt

) kp(CA- LW
Ka

)- km(W-Weq)) f2(θ,C,A,L,W,Weq)(8)

In eqs 7 and 8

kp ) kp0 exp[-E
R(1

T
- 1

T0
)] (9)

is the temperature-dependent polycondensation rate constant,
and kp0 is the polycondensation rate constant at the reference
temperature, T0 ) 549.15 K, which was chosen to be in the
middle of the temperature range over which the experiments
were conducted. Ka is the apparent equilibrium constant, and
km ) 24.3 h-1 is a mass-transfer coefficient that was previously
estimated1 for the conditions encountered in the laboratory-scale
reactor.

The concentration of water in the polymer melt, Weq, that
would be in equilibrium with the water vapor in the gas bubbles
is determined using a Flory-Huggins-based expression26

Weq ) 5.55 × 104 Pw

Pw
sat

exp(-9.624+ 3613
T ) (10)

where the saturation vapor pressure of the water in the gas
bubbles, Pw

sat, can be calculated using the Wagner equation

ln(Pw
sat/Pc)) [-7.77224(1- T/Tc)+ 1.45684(1- T/Tc)

1.5 -

2.71492(1- T/Tc)
3 - 1.41336(1- T/Tc)

6]/(T/Tc)(11)

where Pc and Tc are the critical pressure and temperature of
water, respectively.

The concentration of amide linkages, L, in the molten nylon
612 can be obtained from the material balance equation1

155.23L) 106 - 115.15C- 58.10A- 18.02W (12)

Note that, because the concentration of the amide linkages L
can be computed algebraically from eq 12, only the differential
equations for A, C, and W need to be solved.

To allow for possible modeling errors and process distur-
bances, stochastic terms can be added to the differential
equations

Figure 1. AMLE algorithm when Q is unknown.

Figure 2. Nylon reactor schematic.
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dA
dt

)-f1(θ,C,A,L,W)+ ηA

dC
dt

)-f1(θ,C,A,L,W)+ ηC

dW
dt

) f2(θ,C,A,L,W,Weq)+ ηW (13)

where ηA, ηC, and ηW are continuous-time Gaussian disturbances
with intensities QA, QC, and QW [(mol Mg-1)2/h], respectively.

Schaffer et al.1 noticed that the apparent polycondensation
equilibrium constant, Ka, depends on the water concentration
as well as the temperature of the molten nylon. Zheng et al.2

were concerned that activity coefficients for the end groups and
amide links might also be influenced by temperature and
therefore modified semiempirical Ka model proposed by Schaffer
et al.1 Six parameters were estimated in their nylon reactor
model using a weighted nonlinear least-squares (WNLS) ap-
proach. Initial values of the states, which are uncertain, were
assumed to be perfectly known and were not estimated. In this
article, it will be shown that the AMLE algorithm naturally
facilitates estimation of unknown initial state conditions, while
properly accounting for different measurement variances for
measured states. Many of the parameter values estimated from
Zheng et al.’s model and the available data showed very high
correlations.

Campbell3 and Ramsay et al.22 considered parameter
estimation in a simplified version of Zheng et al.’s nylon
reactor model using a generalized smoothing (GS) approach.
Like AMLE, the GS approach solves a two-step minimization
problem. However, there are some important differences that
distinguish AMLE from GS. The main differences are in the
form of the outer optimization objective function. In the GS
approach, the outer objective function is a WNLS objective
function that is minimized over the model parameters θ. The
inner objective function in GS contains a tuning parameter
that is adjusted manually by the user to account for possible
model imperfections. A major advantage of the AMLE
algorithm over the GS approach is that AMLE eliminates
the requirement for manual tuning. In AMLE, the disturbance
intensities, Q, are estimated using the outer optimization so
that the estimated measurement noise variance is consistent
with prior knowledge about the quality of the measurements.

To resolve concerns about possible overparameterization in
Zheng et al.’s expression for the apparent equilibrium constant,
Variziri26 used additional steady-state data27 and selected the
following semiempirical expression for Ka

Ka ) [1+ a√Weq

γW/γW0
]Ka0 exp[-∆H

R (1
T
- 1

T0
)] (14)

where the activity coefficient for water in the molten nylon25

is given by γW ) exp(9.624 - 3613/T) and γW0 ) 20.97.
The empirical term 1 + a�Weq in the numerator of eq 14
accounts for the influence of water on the activity coefficients
of amine ends, carboxyl ends, and amide links in the polymer
melt.

Equation 14 and additional steady-state data27 are used in
this article. The model selection scheme presented by Varziri26

is briefly described below.
3.2. Model Selection for Ka. The strategy used by Varziri26

for Ka submodel selection is based on the definition of the
apparent polycondensaton equilibrium constant2

Ka )
LeqWeq

CeqAeq
(15)

where the subscript eq indicates equilibrium concentrations,
which are available from steady-state data. From the steady-
state data, Ka was calculated and treated as a measured response
(yKa). The variance σKa

2 of the error, εKa, was estimated to be
94.9. Varziri26 denoted any postulated semiempirical submodel
for Ka by

yKa
) fKa

(θKa
,Weq,T)+ εKa

(16)

Eight possible semiempirical submodels for Ka were consid-
ered, including those previously proposed.1-3 For each of these
candidate submodels, the nonlinear regression problem in eq
16 was solved, using the available steady-state data (see section
3.3), so that estimates for empirical parameters θKa could be
obtained. Based on the sum of squared residuals, qualitative
analysis of residual plots, and also approximate individual
confidence intervals for parameter estimates, the model in eq
14 was concluded to be the most suitable. The estimated
parameters are a ) 0.60 mol-0.5 Mg0.5, Ka0 ) 22.01, and ∆H
) -39.62 kJ mol-1, respectively.

3.3. Experimental Data. Note that all of the data used in
this article result from previous experiments conducted by
Schaffer et al.1 and Zheng et al.2,27 Recent steady-state data
that were not considered in previous parameter estimation
studies1-3 arise from experimental runs conducted to study the
effects of sodium hypophosphite catalyst on the polyconden-
sation kinetics.27

Of the six dynamic experimental runs that are available
for parameter estimation, the first three were conducted at
temperatures of 263, 271, and 281 °C, respectively, whereas
the last three runs were conducted at 284 °C. The additional
steady-state data arise from experimental runs at 290 °C.
During each experimental run, the concentrations of A and
C are measured at several nonuniformly spaced times. The
standard deviations of the A and C concentration measure-
ments are known to be σA ) 0.6 mol Mg-1 and σC ) 2.4
mol Mg-1.1 Because the measured concentration of A is more
accurate, more A concentration measurements than C con-
centration measurements were made during some of the runs.
The water concentration, W, was not measured; therefore,
W is an unmeasured dynamic state. The equilibrium water
concentration, Weq, in the molten nylon can be computed from
the input variable PW using eq 10.

3.4. Parameter Estimation Results. In this section, we use
the objective function of the form given in eqs 2 and 3 to
estimate five parameters, θ ) [kp0, Ka0, E, a, ∆H]T, along with
three process disturbance intensities, Q)[QA, QC, QW]T, and
three state trajectories in the nylon 612 reactor model described
by eqs 9-14.

To form the AMLE objective function, we use B-spline
expansions to approximate state trajectories. For the ith experi-
mental run for A, C, and W, from eq 4

A∼ i(t))�Ai

T(t)�Ai
C∼ i(t))�Ci

T(t)�Ci
W∼ i(t))�Wi

T(t)�Wi

(17)

Because W is not measured, there is no SSE term associated
with this component. The AMLE objective function correspond-
ing to the ith run for this multiresponse model with an
unmeasured state6 becomes
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Ji )
1

2σC
2∑

j)1

NCi

[yCi
(tj)-C∼ i(tj)]

2 + 1
2QC

∫tC0

tCf { dC∼ i(t)

dt
+

f1[A∼ i(t),C∼ i(t),W∼ i(t),Li(t),θ]} 2

dt+

1

2σA
2∑

j)1

NAi

[yAi
(tj)-A∼ i(tj)]

2 + 1
2QA

∫tA0

tAf { dA∼ i(t)

dt
+

f1[A∼ i(t),C∼ i(t),W∼ i(t),Li(t),θ]} 2

dt+

1
2QW

∫tW0

tWf { dW∼ i(t)

dt
- f2[A∼ i(t),C∼ i(t),W∼ i(t),Weqi(t),LI(t),θ]} 2

dt

(18)

where NAi and NCi are the numbers of A and C measurements,
respectively, in the ith experimental run.

Because initial conditions for A and C are assumed to be
unknown, they are included in the corresponding SSE terms,
and the B-spline expansions are not constrained to the initial
conditions as they would be if the true initial values were known.

Because only six experimental runs without the catalyst are
used in the overall parameter estimation, the inner AMLE
objective function for these six runs becomes

Jinner )∑
i)1

6

Ji (19)

Using the objective function in eq 19, the extra steady-state
information available from the three experimental runs with
catalyst would be disregarded. To include this extra information,
the objective function in eq 19 can be modified as follows

Jinner )∑
i)1

6

Ji +
1

σKa

2∑
i)1

3

[yKa
- fKa

(θKa
,Weq,T)]2 (20)

where fKa(θKa,Weq,T)is defined by the right-hand side of eq 14.
This modification arises naturally from the ML development
when yKais considered as an additional nondynamic measured
response.26

To form the objective function for the outer optimization
problem, note that the approximate ML estimators for the
measurement variances for A and C can be expressed as

σ̂x
2 )

∑
i)1

6

∑
j)1

Nxi

[yxi
(tj)- x∼ i(tj)]

2

∑
i)1

6

Nxi

+
trace(Ax

-1)

∑
i)1

6

Nxi

x)A,C

(21)

where Ax
-1 is the inverse of the Hessian of the inner objective

function, Jinner, with respect to the discrete state variables.
Denoting νx ) 1/σ̂x

2trace(A-1), the second term on the right-
hand side of eq 21 can be written as σ̂x

2νx/∑i)1
6 Nxi. By moving

this term to the left-hand side of eq 21 and factoring out σ̂x
2,

eq 21 can be rearranged21 to

σ̂x
2 )

∑
i)1

6

∑
j)1

Nxi

[yxi
(tj)- x∼ i(tj)]

2

∑
i)1

6

Nxi
- νx

x)A,C (22)

In this article, the known values of the measurement noise
variance, σx

2, is used in place of σ̂x
2 to calculate νx. The

denominator in eq 22 is the degrees of freedom, DOFx ) ∑i)1
6

Nxi - νx.
The outer optimization problem can then be written as

Q̂) arg min
Q { DOFA[ σ̂A

2(Q)

σA
2

- 1]2

+DOFC[ σ̂C
2(Q)

σC
2

- 1]2}
(23)

Note that the terms in the objective function of eq 23 are
weighted by DOFA and DOFC to account for the different
numbers of available measurements for the amine and carboxyl
end groups.

Three of the parameters, namely, a, Ka0, and ∆H, were
estimated by Varziri26 using the steady-state data (section 3.2).
These parameters were estimated again using AMLE, and the
previously estimated values of a ) 0.60 mol-0.5 Mg0.5, Ka0 )
22.01, and ∆H ) -39.62 kJ mol-1 were used as initial
parameter guesses. For the rest of the parameters, estimated
values reported by Zheng et al.2 were used as initial values, θ0,
as shown in Table 2, below.

The initial values for the spline coefficients, �Ai and �Ci (i )
1-6) were obtained by fitting a smoothing spline23 to the
measured data. Because the water concentration is not measured,
the initial guesses for the spline coefficients �Wi (i ) 1-6) were
obtained by fitting a smoothing spline to Weq, which was
calculated from eq 10. An alternative would be to solve the
model differential equations and fit a smoothing spline to the
solution for W. Based on our experience, obtaining good
(nonzero) initial guesses for B-spline coefficients is not neces-
sary but can reduce the convergence time. The initial values of
the process disturbance intensities were arbitrarily set to 1. The
estimated intensities, Q̂, are shown in Table 1. The estimated
parameters, θ̂, are reported in Table 2. The results in Tables 1
and 2 were obtained using the following stopping conditions:
For the inner problem, the optimizer stopped when the objective
function changed by less than 1 × 10-8; the outer optimizer
stopped when the value of the objective function changed by
less than 1 × 10-2.

The final B-spline fits using the estimated parameters and
coefficients are shown in Figure 3. The numerical solution of
the model equations, which does not account for the stochastic
process disturbances, is shown in Figure 4. Initial values for
the output trajectories in Figure 4 were determined using the
AMLE algorithm. Note that the B-spline curves pass very
close to the A measurements, and they smooth out some of the
noise associated with the noisier C measurements because we
prescribed that the standard deviation of the known noise

Table 1. Process Disturbance Intensity Estimatesa

intensity estimate

QA 4.37
QC 15.56
QW 0.88

a All intensities have units of (mol Mg-1)2/h.

Table 2. Point Estimates and Approximate 95% Confidence
Intervals for the Nylon Reactor Model Parameters

parameter initial guess estimate lower bound upper bound

kp0 0.019 0.0129 0.0106 0.0152
Ka0 22.01 36.605 27.247 45.963
E 45.9 2E-4 -53.434 53.435
a 0.6 0.286 0.170 0.402
∆H -39.62 -51.012 -60.208 -41.815
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variance associated with C is larger than that of A (σA ) 0.6
mol Mg-1 and σC ) 2.4 mol Mg).

To obtain approximate confidence intervals for the model
parameters, the inverse of the Fisher information matrix can be
used as an approximation to the covariance matrix of the
combined vector of states and parameters.6,8 We approximate
the Fisher information matrix using the Hessian (H) of the inner
objective function with respect to the model parameters θ
evaluated at the converged values. Approximate 100(1 - R)%
confidence intervals for the model parameters can be obtained
as follows

θ) θ̂( zR/2√diag[H-1(θ̂)] (24)

Care should be taken in interpreting the confidence intervals
obtained from eq 24; these intervals are approximate and also
do not take into account the uncertainty in the estimates of the
process disturbance intensities.

Approximate 95% confidence intervals for the parameters are
presented in Table 2, and a correlation matrix for the parameter
estimates is presented in Table 3. The confidence interval
corresponding to the activation energy E contains zero. This is
consistent with the findings of Campbell3 and Ramsay et al.22

Although this parameter could reasonably be zero from a purely
statistical point of view, physical insight tells us that the
activation energy is a positive constant. Unfortunately, the
dynamic data are not rich enough to provide sufficient informa-
tion to estimate E reliably. Table 3 indicates that correlations
between the parameter estimates are small, except for between
Ka0 and a. These two parameters are nearly perfectly negatively
correlated.

To examine the robustness of the proposed algorithm to poor
initial parameter guesses, the AMLE parameter estimation was
repeated using the arbitrary value of 1 as an initial guess for
the five model parameters: θ0 ) [1, 1, 1, 1, 1]T. Despite these
poor parameter guesses, the algorithm converged to point
estimates that are nearly identical to those shown in Tables 1
and 2 (identical up to the second decimal place) for the model
parameters and the disturbance intensities.

For comparison, we also used a standard WNLS approach,
which does not account for model imperfections and process
disturbances, to estimate the model parameters. To have a fair
comparison, we included the additional steady-state data (from
the experimental runs with catalyst) in our WNLS analysis, and
we also estimated 18 initial conditions for A, C, and W for the
six experimental runs. First, we used the same good initial
parameter guesses that were used for AMLE. The estimated
parameters did not move very far from the initial guesses,
producing the parameter estimates in Table 4. This result is not
surprising, because the parameter estimation was started from
the optimal WNLS parameter estimates obtained by Zheng et
al.2 The main differences between the WNLS approach reported
here and that of Zheng et al.2 is that Zheng et al. assumed known
initial conditions for A, C, and W and did not use steady-state
information from the experiments performed with catalyst. In
a second trial, when we used the poor initial parameter guesses,
the WNLS algorithm converged to unrealistic values possibly
corresponding to a local minimum (Table 4). The results in
Table 4 were obtained using a relative tolerance value of 1 ×
10-12 for changes in the objective function and for changes in
the norm of the parameter values. Attempts to obtain confidence

Figure 3. Optimal B-spline trajectories of A, C, and W for six experimental runs (s, B-spline fit; b, measured data).
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intervals for the WNLS parameters were unsuccessful because
the Jacobian, evaluated at the converged estimates, was very
ill-conditioned, indicating severe correlations among the pa-
rameter estimates. Note that Zheng et al.2 were able to compute
approximate confidence intervals for their parameter estimates,
presumably because they assumed perfectly known initial
conditions.

3.5. Implementation Considerations. Choice of the
Knot Sequence. For three state trajectories and six experimental
runs (3 × 6 ) 18), B-spline expansions are required; we used

a fourth-order B-spine basis (third-degree). Rich knot sequences
are required to ensure that the state trajectories are flexible
enough to capture all of the features in the dynamic response.
To set up the bases, 60 knots were uniformly placed along the
time horizon of each state trajectory for each experimental run.
Because the partial pressure of the water in these experimental
runs was adjusted using step changes, the water concentration
in the molten polymer underwent fast changes that were almost
perfect steps. To accommodate the sharp transitions in the W
response, 20 extra knots were uniformly placed in the neighbor-
hood (within 0.5 h) of the times at which step changes occurred.
These extra knots helped remove ripples in the final B-spline
expansion of the W trajectory4 that were apparent using the
initial coarse knot sequence. In addition to the refined knot
sequence, coincident knots were placed at the times of step
changes so that first- and higher-order derivatives of the state
trajectories were not continuous at the times of the step changes.
Overall, 108 B-spline coefficients were used for each of the 18
B-spline expansions.

If the process disturbances and structural model imperfections
are small, the values of the B-spline coefficients are determined
by requiring the estimated trajectory to closely follow the
solution to the differential equations. However, if the process
disturbances and model imperfections are large, the measured
data have a larger effect on the estimated value of the B-spline
coefficients, and having too many coefficients, compared to the
number of data points, can lead to large variances for the
estimated coefficients.

Figure 4. Numerical solution of model equations (without stochastic terms) for A, C, and W trajectories for six experimental runs using the estimated
parameters (s, numerical model solution; b, measured data).

Table 3. Correlation Matrix for AMLE Parameter Estimates

Ka0 kp0 E ∆H a

Ka0 1 -0.2478 -0.0564 -0.4858 -0.9935
kp0 1 -0.1309 0.0542 0.2807
E 1 0.1061 0.0480
∆H 1 0.4659
a 1

Table 4. Point Estimates for the Nylon Reactor Model Parameters
Using the WNLS Method

estimation results
using good

initial guesses

estimation results
using poor

initial guesses

parameter
initial
guess estimate

initial
guess estimate

kp0 0.019 0.019 1 1
Ka0 22.01 22.0104 1 10.62
E 45.9 45.9 1 1
a 0.6 0.611 1 1.123
∆H -39.62 -39.62 1 17.81
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Calculating the Integral in the Inner Minimization. To
calculate the integral in eq 18, a quadrature rule was used; four
collocation points were placed between every two knots. As
noted by Campbell3 and Ramsay et al.,22 the step input in Weq

results in discontinuous derivatives for all three model outputs
at the times of step changes. As a consequence, a small
neighborhood (within 1 × 10-4 h) around each of the times at
which the step changes occur was removed during calculation
of the integral in eq 18.

Minimization Routines. As discussed above, overall, the
inner objective function in this problem should be optimized
over 108 × 18 ) 1944 B-spline coefficients as well as five
model parameters θ. Every time that the variables in the outer
minimization problem (i.e., the process disturbance intensi-
ties) are updated, the inner problem should be solved again.
Therefore, it is essential for the AMLE algorithm to take
advantage of fast and efficient state-of-the-art minimization
routines. Based on our experience, IPOPT,28 which is a
nonlinear solver that can be used with AMPL,29 provides an
excellent tool for solving nonlinear optimization problems.
AMPL endows IPOPT with automatic differentiation capabil-
ity, which eliminates the requirement of providing the
nonlinear solver with an analytical or a numerical Jacobian.
The Hessian matrix that is used in eq 21 was obtained using
the automatic differentiation feature in AMPL.

Unfortunately, we were not able to implement the complete
two-level minimization problem as appears in eqs 20 and 23
using AMPL, because complicated user-defined functions
(such as the solution to an optimization problem) are not
permitted in AMPL in a straightforward fashion. Note that
each iteration of the outer optimization problem requires the
solution of another (inner) minimization problem. Instead,
we opted to use nlscon,30 which is a very efficient nonlinear
solver in Matlab, to solve the outer optimization problem
and the combination of AMPL and IPOPT to solve the larger
inner minimization problem by calling AMPL from within
Matlab.

Another issue regarding the inner minimization problem
is whether the initial values of the parameter guesses, θ0,
for each iteration should be set to the converged values from
the previous iteration or the same initial guesses as used in
the first iteration. We tested both methods for this problem
and found that both methods led to the same point and
interval estimates for the model parameters and disturbance
intensities.

4. Summary and Conclusions

In this article, the AMLE parameter estimation algorithm was
applied to a laboratory-scale nylon 612 reactor model, which
is a difficult and practical chemical engineering example, to
estimate the states, parameters, and process disturbance intensi-
ties. We showed that using AMLE allows the modeler to take
modeling errors into account and to obtain a measure of these
discrepancies by estimating the corresponding process noise
intensities.

This parameter estimation problem involved several chal-
lenges. The first challenge was to exploit all of the available
data, which consisted of data from six dynamic experimental
runs without a catalyst and also steady-state data from three
additional experimental runs with a catalyst. It was shown
that the AMLE objective function can easily be modified to
include the additional steady-state information. The nylon
reactor is a multiresponse model with three outputs. Two of
the outputs, namely, the concentration of carboxylic acid end

groups and the concentration of amine end groups, were
measured at different and nonuniform sampling times, with
different levels of accuracy. The third output, water concen-
tration, was not measured. It was demonstrated that AMLE
can easily cope with these challenges, because the form of
its inner objective function allows for the incorporation of
nonuniform observation times and unmeasured states. An-
other difficulty encountered in the nylon reactor parameter
estimation problem is that initial state conditions are not
perfectly known and should be treated as unknowns that need
to be estimated. These unknown initial conditions were
obtained as a byproduct of estimating the state trajectories
using AMLE, which is facilitated by using B-spline expan-
sions to represent the state trajectories.

AMLE was successfully applied to the nylon reactor problem,
and parameters, states, and process disturbance intensities were
estimated. Approximate confidence intervals were obtained for
model parameters. The interval estimate corresponding to the
activation energy parameter, E, contained zero, indicating that
there was insufficient dynamic information available to obtain
a reliable estimate.

To investigate how sensitive the outcome of AMLE was
to initial parameter guesses, we repeated the parameter
estimation algorithm using arbitrary initial parameter guesses
that were far from the estimated values. Despite these poor
initial guesses, the algorithm converged to the same point
estimates as it had for the good initial guesses. A standard
weighted nonlinear least-squares algorithm failed to converge
to reasonable parameter estimates using the poor initial
guesses and converged to parameter estimates that were very
close to the corresponding initial values for the good initial
guesses.
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Nomenclature

AMLE ) approximate maximum likelihood parameter estimation
DOF ) degrees of freedom
GS ) generalized smoothing
MIMO ) multi-input multi-output
ML ) maximum likelihood
NLS ) nonlinear least-squares
PDF ) probability density function
SDE ) stochastic differential equation
SISO ) single-input single-output
SSE ) sum of squared errors
WNLS ) weighted nonlinear least-squares
A ) concentration of amine end groups, mol Mg-1

A ) Hessian of the inner objective function with respect to the
system states

C ) concentration of carboxylic acid end groups, mol Mg-1

E ) activation energy, kJ mol-1

E{.} ) expectation operator
H ) Hessian matrix of the inner objective function with respect to

model parameters
∆H ) apparent enthalpy of polycondensation, kJ mol-1
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Ji ) ith component (ith experimental run) of the inner objective
function

Jinner ) inner objective function
Ka ) apparent polycondensation equilibrium constant
Ka0 ) apparent polycondensation equilibrium constant at T0 and

low water content
L ) concentration of amide links
NAi ) number of observations for A in the ith experimental run
NCi ) number of observations for C in the ith experimental run
Pc ) critical pressure of water, kPa
Pw ) partial pressure of water in the gas phase, kPa
Pw

sat ) saturation pressure of water in the gas phase, kPa
Q ) process disturbance intensity
QA ) process disturbance intensity for SDE corresponding to A,

(mol Mg-1)2/h
QC ) process disturbance intensity for SDE corresponding to C,

(mol Mg-1)2/h
QW ) process disturbance intensity for SDE corresponding to W,

(mol Mg-1)2/h
Q ) vector containing process disturbance intensities
R ) ideal gas law constant, 8.3145 × 10-3 kJ mol-1 K-1

T ) temperature, K
T0 ) reference temperature, 549.15 K
Tc ) critical temperature of water, K
W ) concentration of water, mol Mg-1

X ) exponent in the kinetic expression for the reaction rate
a ) empirical model parameter, (mol Mg-1)0.5

f ) nonlinear function
fKa ) nonlinear function for Ka model
km ) volumetric liquid-phase mass-transfer coefficient for a nylon/

water system, h-1

kp ) apparent polycondensation rate constant, Mg mol-1 h-1

kp0 ) apparent polycondensation rate constant at the reference
temperature, 549.15 K

tmj ) time of the jth measurement, h
u(t) ) input function
x0 ) initial state value
x(t) ) state of the system
x∼(t) ) spline approximation of the system state
xm ) vector of state values at measurement times
y(tmj) ) measured value at time tmj

yKa ) Ka calculated from the measurements
ym ) vector of the measurements
zR/2 ) ormal random deviate corresponding to an upper tail area of

R/2
R ) significance level for confidence intervals
�i ) ith B-spline coefficient
� ) vector of B-spline coefficients
δ(.) ) Dirac delta function
ε(tmi) ) normally distributed measurement noise for state i
εKa ) approximate error in Ka calculated using the measurements
ηA ) Gaussian process disturbance for differential equation of state

A, mol Mg-1/h
ηC ) Gaussian process disturbance for differential equation of state

C, mol Mg-1/h
ηW ) Gaussian process disturbance for differential equation of state

W, mol Mg-1/h
θ ) vector of model parameters
θ0 ) initial value for the vector of model parameters
θKa ) vector of Ka model parameters
σC

m ) measurement noise variance
σA

2 ) measurement noise variance for A, (mol Mg-1)2

σC
2 ) measurement noise variance for C, (mol Mg-1)2

σKa
2 ) approximate noise variance for Ka calculated from measure-
ments

�i ) ith B-spline basis function
� ) matrix containing all φi values
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